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Abstract

Game theory is used to model conflicts between one or more players over

resources. It offers players a way to reason, allowing rationale for selecting strategies

that avoid the worst outcome. Game theory lacks the ability to incorporate

advantages one player may have over another player. A meta-game, known as

a hypergame, occurs when one player does not know or fully understand all the

strategies of a game. Hypergame theory builds upon the utility of game theory

by allowing a player to outmaneuver an opponent, thus obtaining a more preferred

outcome with higher utility. Recent work in hypergame theory has focused on normal

form static games that lack the ability to encode several realistic strategies. One

example of this is when a player’s available actions in the future is dependent on

his selection in the past. This work presents a temporal framework for hypergame

models. This framework is the first application of temporal logic to hypergames and

provides a more flexible modeling for domain experts. With this new framework for

hypergames, the concepts of trust, distrust, mistrust, and deception are formalized.

While past literature references deception in hypergame research, this work is the first

to formalize the definition for hypergames. As a demonstration of the new temporal

framework for hypergames, it is applied to classical game theoretical examples, as well

as a complex supervisory control and data acquisition (SCADA) network temporal

hypergame. The SCADA network is an example includes actions that have a temporal

dependency, where a choice in the first round affects what decisions can be made in

the later round of the game. The demonstration results show that the framework is

a realistic and flexible modeling method for a variety of applications.
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A TEMPORAL FRAMEWORK FOR HYPERGAME ANALYSIS OF

CYBER PHYSICAL SYSTEMS IN CONTESTED ENVIRONMENTS

I. Introduction

If you know the enemy and know yourself,

you need not fear the result of a hundred battles.

If you know yourself but not the enemy,

for every victory gained you will also suffer a defeat.

If you know neither the enemy nor yourself,

you will succumb in every battle.

- Sun Tzu [350]

Americans have been using a form of “cyber” since the 1840’s, with the invention

of the telegraph. While the telegraph did not present the same level of threat, as

our information systems do today, it still had privacy, authentication, and physical

security concerns. These same concerns still apply to technology in use today, except

our dependence on the devices has increased, to the point where almost every aspect

of everyday life is touched by cyber.

Life’s dependence on technology and interconnected devices requires advanced

diligence in order to protect the devices and technology, and life in general, from the

advanced cyber threats of today. Diligence must not only be given to the capabilities

and motivation of our adversaries, but also to our own capabilities, motivation, and
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vulnerabilities. This need has been demonstrated through the many comtemporary

cyber threats against the government (and its contractors) [1, 8, 142, 197, 237, 249],

the banking industry [3, 219, 226, 309], and other vital resources [146, 236, 273].

Often these processes are controlled by interconnected devices, also known as Cyber

Physical Systems (CPS).

Cyber Physical Systems (CPS) pose a bigger risk than the telegraph did over a

century ago [295]. These devices are responsible for braking cars and trucks, as well

as the luxury controls such as radio, air conditioning, and heat. Airplanes rely on

these devices for navigation, maintenance, and control of flight surfaces. Common

household appliances are interconnected, allowing for lower energy consumption or

ensuring your favorite coffee is automatically prepared in the morning. Power and

energy services also use Cyber Physical Systems (CPS) to control all aspects of

function forming a smart grid.

1.1 Motivation

Knowing yourself and the enemy is becoming more important in securing and

defending critical electronic assets, such as CPS. As each CPS is connected to the

Global Information Grid (GIG), it is necessary to protect the device from cyber

threats. According to Clark et al. [74], cyber ”defenders are losing the cyber security

arms race” and defenders have been approaching the problem of cyber security the

wrong way. Defense strategies are often outdated, based on assumptions that no

longer reflect real world threats, the attacker’s capabilities, or vulnerabilities (current

attack surface).

1.1.1 Patch and Pray vs. Offensive Approach.

Often defenders use the ”patch and pray” approach to system security. This

approach involves waiting for a system to be attacked, analyzing the attack, and then

implementing strategies or policies to eliminate or mitigate future similar attacks.
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Antivirus software based on signatures or fingerprinting, is part of the “patch and

pray” approach, offering decent protection against known attack from the past, but

offering little to no protection against zero-day attacks (never seen before) or future

attacks. To better protect systems and improve security, it is necessary to take an

offensive approach to defense allowing the defender to better understand themselves

and the enemies they face, as well as the interactions between each participant.

Validating the need to find an offensive approach to defense is reflected in

government-sponsored research and directives. In 2006, the federal Plan for Cyber

Security and Information Assurance Research and Development [207] highlighted the

trend of espionage from industrial and state-sponsored groups. In 2008, the Center

for Strategic and International Studies produced the report, Securing Cyberspace

for the 44th Presidency [285] which emphasized espionage and included new threats

to digital intellectual property. The United States (U.S.) conducted a cyberspace

policy review in 2009 which concluded the nation is falling behind in terms of

cybersecurity and failed to keep pace with the growing threat [302]. In 2013, President

Barack Obama stated in an executive order, “[C]yber threat to critical infrastructure

continues to grow and represents one of the most serious national security challenges

we must confront.” [262] This executive order placed an emphasis on identifying

and improving the cyber security of critical infrastructure. President Obama also

signed a policy directive in 2013, stating the government should take proactive steps

to “reduce vulnerabilities, minimize consequences, identify and disrupt threats, and

hasten response and recovery efforts related to critical infrastructure” [261].

In 2015, President Obama recognized the importance of sharing data of cyber

security risks and incidents between private companies, nonprofit organization, and

federal government agencies in an executive order [264]. The President went even

further in another executive order by declaring a national emergency to deal with
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malicious cyber-enabled activities originating from persons outside the U.S. [263].

Both of these concepts are reflected in the Department of Defense (DoD) Cyber

Strategy published in April 2015. The cyber strategy focuses on three main concepts

[84]:

• Build and maintain forces and capabilities to conduct cyberspace operations.

• Defend DoD information networks and secure data.

• Prepare to defend U.S. from disruptive or destructive cyber attacks.

These reports highlight the need for improved cyber security models for a

better understanding of how to protect mission critical assets. While these reports

show an interest in cyber and homeland security by the U.S. since 2006, continued

improvement is required as adversaries continue to develop new methods and

techniques for attacking critical assets.

1.1.2 Cyber Physical System Attacks.

Around July 2010, Stuxnet was found in Supervisory Control and Data

Acquisition (SCADA) systems; but not just any SCADA system - Iran’s Nuclear

SCADA systems [323]. Stuxnet did not steal, manipulate, or ease information, as

in standard espionage [215]. Instead Stuxnet was designed to physically destroy

a military target. The goal was to physically destroy a nuclear power plant fuel

refinement systems through the SCADA control systems. Until this point, it was

largely believed that SCADA systems were immune to attack through isolation [97].

Stuxnet has been called the first cyberwarfare weapon [98, 215]. It was discovered in

Belarus by security firms [73].

Cyber-security was again put in the spot-light in September 2011 when Duqu was

discovered. The purpose of Duqu is to collect data and digital assets for intelligence

from industrial infrastructure and system manufacturers [345]. This information can
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be used to mount a future attack using the collected information. It contained a

remote access Trojan and a key logger, but could not self-replicate. It was highly

targeted against specific organizations, using phishing emails with malicious Microsoft

Office documents attached. Threats like Duqu provide the foundation for attacks like

Stuxnet, quietly collecting sensitive information, that can be used to customized an

attack with larger amounts of damage.

However, Duqu and Stuxnet appear to be just the beginning of a round of cyber-

warfare weapons. Flame quickly followed Duqu and Stuxnet. Flame also known

as sKyWIper, may have been in the wild for 5 to 8 years before discovery in May

2012 [80]. Flame steals information and is self propagating using multiple methods

which are configurable by the attacker. It uses the keyboard, screen, microphone,

storage devices, network, WiFi, Bluetooth, and USB to gather data on digital assets.

These digital assets could then be infiltrated out of an organization and used to inflict

damage.

Red October was discovered in October of 2012, and is believed to have been

in the wild for over 5 years [208]. The malware targeted government and scientific

research organizations in order to gather data and digital assets. Some assets, such

as credentials were later reused, when the attacker needed to guess passwords on the

network [210]. This attack was not just limited to Personal Computers (PCs) but

also inflected mobile devices. This increased the amount of desired data available to

attackers by opening the door to attacking to new forms of data generation, such as

phone calls, text message, and other personal data.

APT28, belonging to the family called CHOPSTICK, targets critical information

related to governments, military, and security organizations. Samples of APT28 were

discovered from mid-2007 to September 2014. It is believed this information is likely to

benefit the Russian government. APT28 appears to have a professional development
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team, with standard working hours (8AM to 6PM) between Monday and Friday [99].

This indicates substantial financial backing over seven years and long term dedication

to espionage against military and government targets.

In 2015, it was discovered Adobe Flash being used to infect computers then

hold the computers for ransom or redirect internet traffic [333]. Attacker’s purchased

advertising space on websites and after a user visited a site with the ads, malware

is downloaded to the user’s computer. The malware looks for vulnerable versions of

Flash and uses it to gain control of the infected computer. This is only one example

of malware targeting the general public.

SLEMBUNK, belongs to a family of Android trojan applications, targets mobile

banking applications [374, 375]. Users become infected by downloading common

popular applications that are infected. It attempts to steal log-in credentials of the

mobile banking applications by detecting the launch of legitimate applications and

displaying fake log-in interfaces. This version of malware has targeted over 33 mobile

banking applications and covered North America, Europe, and Asia Pacific [375].

Duqu, Stuxnet, Flame, Red October, APT28, and SLEMBUNK have caused a

renewed interest in cyber-security. This is partly due to the high consequences of a

successful attack as well as the weaknesses that continue to exist in networks. As

we increase our understanding of the weaknesses, vulnerabilities, and interactions

concerning networks, we gain a better understanding of how to protect and defend

critical networks with limited resources.

1.1.3 The New Battlefield.

These recent attacks have transitioned the U.S. military from its traditional view

of a battlefield of a physical space into the new battlefield of cyberspace. First it is

necessary to define this new battlefield:
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Definition 1. Cyber - “Of, relating to, or characteristic of the culture of computers,

information technology, and virtual reality.” [86]

Definition 2. Cyberspace - Is “an operational domain whose distinctive and

unique character is framed by the use of electronics and the electromagnetic spectrum

to create, store, modify, exchange, and exploit information via interconnected

Information-Communication Technology (ICT) based systems and their associated

infrastructures.” [207]

Definition 3. Cyberattack - Combing computer network attack and defense

methods to use as an individual act in order to cause damage, destruction, or

casualties for personal gain or a limited cause [221].

Definition 4. Cyberwarfare - Combining computer network attack and defense

methods with special technical operations by states or political groups, in order to

cause damage, destruction, or casualties for political effect [85] [221].

Definition 5. Cyber Physical Systems (CPS) - “Are integrations of computa-

tion, networking, and physical processes. Embedded computers and networks monitor

and control the physical processes, with feedback loops where physical processes affect

computations and vice versa” [295]

This new battlefield is defined within the increased dependence/reliance on

electronic systems. More and more of these systems are cyber-physical systems -

systems making life and death decisions as these appear in cars, planes, buildings,

phones, and medical devices.

Cyber may also be used as a weapon which requires some of the same principles as

kinetic warfare to be considered as well as additional principles specific to cyberspace.

Principles that must be considered include: lack of physical limitations, kinetic effects,

stealth, mutability and inconsistency, identity and privileges, dual use, infrastructure
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control, information as operational environment, assured response, and escalation

control. The utility of cyberwarfare has benefits and disadvantages, with tradeoffs

being made as different strategies are selected and the adversary reacts.

Game theory has been applied to model and analyze cyber security issues and

conflicts [72, 165, 306, 326, 331]. Game theoretic applications have often focused

on symmectric games where players did not have distinct advantages (known or

unknown) over other players. These advantages often happen in military engagements

as opposing forces try to protect information. Hypergame theory can model and help

understand the strategies that yield the greatest utility during cyber warfare while

considering advantages/disadvantages. That can help to maximize the benefits while

minimizing the disadvantages. It can also model the opponent in order to better

understand any response such as ”assured responses” and ”escalation control.”

1.2 Problem Statement

As the global economy develops, manufacturing is no longer the only means

of power and influence between countries. Instead manufacturing is becoming

concentrated among a handful of countries where goods can be produced at record low

prices. As countries like the U.S. watch manufacturing disappear, another commodity

is developing - knowledge as capital. Knowledge as capital can be in the form

of military weapon technology, cutting edge medical technology, and even foreign

intelligence. This capital can lead to increased power over other countries with less

means or countries in need of help defending themselves. The disadvantage is that

most of this knowledge is stored electrically on networked computer systems and is

susceptible to attack.

Over time this knowledge store has become the target of adversaries, who find it

cost effective to steal it instead of producing it themselves. Numerous cyber attacks

against U.S. contractors have shown the importance placed on this information by
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adversaries [1, 8, 142, 237, 249]. These cyber attacks against critical national security

systems are showing no signs of ceasing. Photos of China’s new fighter have emerged

that appear the technology used in the aircraft is very similar to the U.S.’s F-22

Raptor [197]. As shown in Figure 1.1, the technology in both aircraft is strikingly

similar, an indication of industrial espionage and cyber theft.

U
S

F
2
2

C
h  J
i   2
n  0
a

Figure 1.1: U.S. media comparison of U.S. F-22 and China J-20 [197].

The United States Air Force, as well as the rest of the Department of Defense

(DoD), has an interest to build stronger defenses to cyber attacks. Building these

defenses require modeling, of the cyber attack as a conflict iof the adversary of the

true state of the U.S. network, and understanding of the interactions of all of these

elements over time. These interactions are often complex and not fully understood.

This incomplete information leads to changing models or models full of assumptions

which are hard to apply to general attacks/conflicts.

1.3 Temporal Hypergame Approach

While hypergames provide a clear and concise method of displaying information

about a scenario for analysis, this research proposes to address three current issues
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when applying hypergame theory to complex domains by extending hypergame theory

with temporal concepts to improve the representation of the cyber-conflict. In order

to achieve this goal, there are two objectives:

1. Develop a temporal hypergame mathematical framework and define trust,

distrust, and deception formally.

2. Extend the theoretical application of hypergames to cyber related conflicts.

A formal framework for a temporal hypergame is developed in order to allow

hypergames to model temporal aspects of games that are currently neglected. It

incorporates temporal logic to ensure decision makers are able to build a better model

of the problems decision makers face. Given the unbalanced nature of hypergames

where one player may not be aware of all the possible actions and outcomes in a

given game, deception is an important concept. While past literature discusses the

usefulness of using hypergames to model deception, no formal mathematical model

has been presented. This research takes key concepts from the literature and presents

a formal mathematical model over the developed framework. In order to analyze the

framework, it is applied to a complex cyber attacker/defender conflict of a SCADA

network.

The temporal framework for hypergames continues to incorporate the knowledge

of the domain experts, that requires human-in-the-loop interactions. Thus, this

methodology for analyzing conflicts/decision making is not intended to be totally

automated. While an automated system could be created, it is not the focus of this

research.

1.4 Significance

The alarming rate at which cyber threats continue to evolve has demonstrated

a need to help decision makers model the threat, select the best strategy based
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on resources, information, and beliefs about the adversary. The loss of critical

information or systems to the malicious actions of the adversary can have far-reaching

consequences and jeopardize the success of the mission. The deployment of accurate

and timely threat deterrents, damage reduction techniques, and intelligence gathering

techniques can prevent or lower the cost of recovering from a cyber attack.

This research provides the U.S. Air Force, Department of Homeland Security,

and other government agencies a method to organize information, resources, and

beliefs in order to reason about the cyber battle space and make rational decisions.

The extension of hypergame theory with temporal constructs allows the model to

evolve over time leading to a more actuate model for decision makers. The temporal

hypergame framework developed allows for a formal definition of deception over the

model. This helps improve the ability to identify and limit deception in decision

making.

1.5 Document Organization

This document is organized as follows. Chapter 2, 3, and 4 provide a review of

the background literature. In particular, relevant literature about game theory and

decision theory is provided in Chapter 2; the differences between game theory and

decision theory are also discussed. Chapter 3 covers the literature on hypergame

theory and representations, such as HNF, and develops the foundation of using

hypergames to model complex conflicts/decision making processes. A temporal logic

overview is presented in Chapter 4, providing a concise model to capture temporal

modeling aspects.

Chapter 5 presents mathematical models for the two hypergame models presented

in the literature. The models include the original model developed by Bennett and

the improved representation developed by Vane. These mathematical models serve

as the foundation on which to begin integration of temporal constructs for HGT.
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Chapter 6 integrates the temporal aspects 4 with the Hypergame Theory

presented in Chapter 3 and the hypergame models presented in Chapter 5. The

enhancements to the temporal model and the adaptability of hypergames are

discussed, followed by the entire temporal hypergame framework being presented.

The temporal hypergame framework is used to define key concepts important to

hypergames. The first is the definition of trust (as well as distrust), using the

temporal constructs of the framework. From the definition of trust, the concept

of misperception and deception is defined and discussed. Theorems about repeated

games are discussed in terms of applicability to the temporal hypergame model.

Chapter 7 applies the temporal framework. The first two applications are

classical game theory examples, the Prisoner’s Dilemma and the game of Chicken.

These games show the framework is able to represent simple classical games (for

understanding) and capture the iterated (temporal) nature of the games. The

framework is applied to a SCADA cyber security hypergame. This application

exercises the framework and provides a clear application to a complex hypergame.

Chapter 8 states the research conclusions and summarizes possible future work.

The conclusions contain an organized list of findings and definitions evolved from the

framework of this research.
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II. Tale of Two Theories

Game theory is a bag of analytical tools designed to help understand the

phenomena that observed when decision-makers interact [15]. Decision theory is

a formal mathematical theory about how decision makers make rational decisions as

they interact with their environment. What is the difference between game theory

and decision theory? There is a division between decision theory where the outcome

depends on the players decisions and the impersonal universe, and game theory

depends on the decisions made by interacting with other players. This chapter

discussed game theory and decision theory, as well as the differences between the

two theories.

2.1 Game Theory

Game theory is based on rationality and utility theory. Often it is assumed that

human beings are rational and always seek the best alternative when presented with

a set of possible choices. This increases the chance of predictability by narrowing

the range of possibilities. Utility theory is based on rationality and that an agent

will always maximize their utility through their choices. Utility is a quantification

of a person’s preferences with respect to certain objects and the environment. Game

theory is highly mathematical and assumes all interactions can be understood and

navigated by presumptions.

Game theory asks two questions about the interaction of the decision-makers

[364]:

• How do individuals behave in strategic situations?

• How should these individuals behave?

Answers to the two questions do not always coincide [1].
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2.1.1 Definitions.

The basics of game theory are presented in detail for greater clarity when the

concepts are applied in following sections. The following set of definitions provides

a basic understanding of game theory terminology. This terminology is further

developed in [270], [88], [248], or [258].

• Game A set of interactions between players, where constraints and utility are

considered without concern for response from other players.

• Player A decision maker in a game. The decision maker chooses actions in

order to carryout a strategy in a game. A player may be a person, as well as

an animal, machine, or group of people.

• Action A valid move in a game.

• Payoff Quantitative measurement of the reward received by each player at the

end of a game.

• Strategy The set of actions an individual player can make in a game.

• Pure Strategy A strategy that a player follows in every attainable situation

during a game.

• Mixed Strategy A strategy that consists of a multiple set of actions that

are chosen based on a probability distribution that determines how often each

action is played.

• Dominating Strategy A player’s strategy is said to dominate the strategy of

another player if it always results in a better payoff regardless of the strategy

of the other player. The strategy weakly dominates the other strategy if it is

always at least as good.
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• Rational Behavior Each player has a consistent set of payoffs for possible

outcomes and chooses the strategy that maximizes the player’s payoff.

• Perfect Information Information concerning an opponent’s past moves are

well known in advance. Tic-tac-toe, chess, checkers, and go are examples of

games with perfect information.

• Imperfect Information Partial or no information concerning the opponent’s

past moves are given in advance of the player’s decision. Imperfect information

may be diminished over time if the same game is repeated with the same

opponent.

• Complete Information All of the players in a game knows the strategies

and payoffs of every player. Complete information is not the same as perfect

information, because the former does not consider the actions each player have

taken in the past.

• Incomplete Information Partial or no information concerning the opponent’s

strategies or payoffs are given in advance of the player’s decision.

• Signaling Strategies that use signals.

• Signals Objective evidence or actions in a game that offer credible proof of a

player’s information.

• Screening A player can create a scenario in a game where another player must

take some action that reveals credible proof of that player’s information.

• Screening Devices Strategies that use screening.

• Normal Form A matrix representation of the possible outcomes based on each

decision by the players.
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• Nash Equilibrium A set of actions in which neither player can increase their

utility by unilaterally changing his or her strategy. If a player uses mixed

strategies, then the expected value of the payoffs are maximized.

• Simultaneous Game Each player chooses an action simultaneously without

knowing which action was chosen by the opponent. Each action may happen

at different times but the actions are unknown to each player. A one-shot

simultaneous game is also called a static/strategic game.

• Sequential Game Each player chooses an action in a predetermined order.

Players are allowed to observe the decisions of the other players before making

a decision.

• Non-cooperative Game Players in the game are in conflict with another

player. There is no incentive for players in conflict to compromise.

• Zero-sum Game The sum of payoffs remains constant during the course of

the game. Being well informed always helps the two players in conflict.

• Bayesian Game A player assigns a ”type” to all of the other players at the

start of a game. The information about the other player’s strategies and payoff

is incomplete. The outcome of the game is predicted using Bayesian analysis.

• Dynamic Game Players consider their actions in multiple stages of a game.

It is the sequential structure of the decision making by players in a strategic

game. The sequences are either finite or infinite.

• Stochastic Game Involves probabilistic transitions through states of the game.

The game has a start state where the players choose actions and receive a payoff

based on the current state. The game transitions into a new state using a

probability from the players actions and the current game state.
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2.1.2 Overview.

Game theory can be traced to Talmud (0-500 AD) with results similar to modern

game theory [21]. Cournot [79], Edgeworth [92], and Bertrand [49] published the first

papers on oligopoly pricing and production. These original papers were considered

special models. Modern game theory was born with the collective work of Zermelo

[372], Borel [56], and von Neumann [257] (original non-english [256]). In 1944,

von Neumann and Morgenstern published a seminal book on zero-sum cooperative

games where players form coalitions [258]. Maximizing expected utility payoff is first

attributed to Bernoulli [48]; the modern idea is from von Neumann and Morgenstern

[258]. von Neumann and Morgenstern showed that for each rational player there is

a way to assign utility numbers to the possible game outcomes, in which the player

will choose the outcome that maximizes the player’s expected utility.

Zermelo [372] applied game theory to the game of chess. While the initial theory

states that a game cannot end in a draw and one player has a winning strategy if: 1)

the game is finite, two-person; 2) perfect information; 3) chance does not affect the

decision making process. Zermelo’s theorem has been generalized for game theory

[234] [316]:

Theorem 1. Every finite game of perfect information has a pure strategy Nash

equilibrium that can be derived by backward induction. Moreover, if no player has

the same payoffs at any two terminal nodes, then there is a unique Nash equilibrium

that can be derived in this manner.

von Neumann [256] developed the Minimax Theorem in 1928. It is the

fundamental theorem of game theory that states a game has optimal mixed strategies

(for finite, zero-sum, two-person games). The Minimax Theorem is formalized by

[315, 365]:
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Theorem 2. Formally, let X and Y be mixed strategies for players A and B

respectively. Let M be the payoff matrix. Then

maxXminYX
TMY = minYmaxXX

TMY = v

where v is called the value of the game and X and Y are called the solutions.

In the early 1950’s Nash contributed to noncorporative and corporative game

theory [251–253]. Nash [250] builds on von Neumann and Morgensterns work by

assuming the absence of coalitions where each player acts independently. His work

proves for each finite non-cooperative game there is at least one equilibrium point

assuming the players are rational. A Nash equilibrium is a strategy where none of the

players can improve their payoff by unilaterally changing their strategy. In a game of

mixed strategies, every game will have at least one Nash equilibrium.

Definition 6. Nash equilibirum [252] - A strategy pair (p, q) is a Nash equilibrium

of a game G if given all other strategies, r: Player1(G(p,q)) ≥ Player1(G(r,q)) and

Player2(G(p,q)) ≥ Player2(G(r,q))

Nash also showed that in a game with mixed strategies, and not just pure

strategies every game will have at least one Nash equilibrium [250]. The Nash

Existence Theorem stated formally:

Theorem 3. Every finite game has a mixed strategy Nash equilibrium.

Additional work in game theory was completed during World War II (WWII) by

the Rand Corporation. This research combined military planning with game theory

research, leading to developments in reasoning under uncertainty.

Selten [320] presented the idea that in games where all the players can choose

contingent plans not all of the Nash equilibria are equally reasonable. This is due to

the fact that players can make empty threats - contingent plans - that may or may
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not be carried out. The concept resulted in subgame perfection to eliminate equilibria

that depend on threats.

When describing a game model, two forms can be used. The extensive form using

a game tree or graph to model the possible strategies and all possible outcomes. As

shown in Figure 2.1, there are two players, player 1 (P1) and player 2 (P2). Player

1 chooses first by selecting strategy U or strategy D. Player 2 is allowed to see the

action of Player 1 and then can choose strategy L or strategy R. After this, players

receive the outcomes located on a terminating branch on the tree. The extensive form

is used in [15, 325]. The strategic form (or normal form) uses a matrix to represent

the players, their strategies, and the possible outcomes as shown in Figure 2.2. While

the majority use the strategic model [23, 72], there are a few that use both models

[23, 162]. The strategic form has a simplicity that lends to a straightforward analysis.

For cyber security games players are not making decisions one at a time in sequence,

as in the extensive form game. Instead players are making decisions dynamically and

possible at the same time, where the strategic form is better suited.

2.1.3 Classical Games.

The following section discusses some of the games used in classical game theory.

A brief overview is given in Table 2.1 of the game characteristics. These are a few of

the important games and not an inclusive list. A more detailed list can be found on

Wikipedia [77].

2.1.3.1 Prisoner’s Dilemma.

In game theory, the Prisoner’s Dilemma described by Melvin Dresher [90], Merrill

Flood [104], and Albert Tucker [284] is a classic example of how the interaction

between two individuals leads to cooperation or not. In the Prisoner’s Dilemma there

are two players, Prisoner A and Prisoner B. Each player can choose one of two actions,
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P1

P2 P2

(6, 4) (5, 5)(0, 0) (0, 0)

U D

L RR L

Figure 2.1: Example of Game in Extensive Form.

Figure 2.2: Example of Game in Strategic (Normal) Form.
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Table 2.1: Overview of Games in Game Theory.

Property/ Prisoner’s Chicken Matching Rock, Paper, Battle of

Game Dilemma (Hawk-Dove) Pennies Scissors the Sexes

Players 2 2 2 2 2

Strategies 2 2 2 3 2

# of Pure NE 1 2 0 0 2

Sequential No No No No No

Perfect

Information No No No No No

Zero-sum No No Yes Yes No

either the player can choose to cooperate by staying silent or defect by betraying the

other player. The consequence of selecting an action results in no jail time (jail(0))

or jail time (jail(x) where x is the amount of time in jail). The payoff function is if

the player cooperates and the other player cooperates, both receive one year in jail,

otherwise if the other player defects the player receives 10 years in jail while the other

player receives no jail time. If both players defect, then both players receive five years

in jail. This game is shown in normal form in Figure 2.3.

In the Prisoner’s Dilemma, betrayal always has a higher reward than cooperation.

If all players are purely rational, then they would betray each other by choosing to

defect. It is clear both players would receive a better reward by both cooperating.

2.1.3.2 Chicken.

Chicken , also known as the Hawk-Dove or Snow-Drift game, is a game where

players prefer to not yield to each other, while the worst outcome is obtained when

both players fail to yield. The game of Chicken and the Hawk-Dove game are identical
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Figure 2.3: The Prisoner’s Dilemma - Normal Form.

from a game theoretic view. The differences in names are from each game being used

in different research areas such as economics or biology [270].

In Chicken [293] two players drive towards each other on a possible collision

course. Each player has two options: swerve or continue straight. It is possible that

if neither player swerves, both may die in a head-on collision. If a player swerves

they are called a ”chicken”, which is considered bad. Since the worst outcome for

both players is a collision, it is presumed that the best outcome is for each player to

stay straight while the other player swerves. Here each player risks the most, while

attempting to secure the best outcome. This is represented in Figure 2.4, where the

benefit of winning is 1, the cost of losing is -1, and crashing costs -10.

The cost of swerving is trivial compared to the cost of a crash, it is therefore

reasonable to assume the strategy to swerve is likely. But if the player’s opponent

is considered reasonable, then it may be better to stay straight, believing the other
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Figure 2.4: The Game of Chicken - Normal Form.

player will be reasonable and swerve to avoid the collision. In this game of chicken,

the pure strategy equilbria are the two outcomes where one player stays straight and

the other swerves.

2.1.3.3 Hawk Dove.

The name Hawk-Dove comes from biological literature by John Maynard Smith

[286] and the traditional payoff matrix is given in [335] and [334]. It is similar to the

game of Chicken.

2.1.3.4 Differences in the Prisoner’s Dilemma and Chicken.

In the Prisoner’s Dilemma, both players have a dominating strategy. This means

that regardless of the strategy chosen by the opponent, the player should choose a

specific action. In this case the player would choose to defect. If both players choose

their dominating strategy, then the outcome is a Nash equilibrium. In the sense of a

Pareto equilibrium this is inefficient because all of the players would prefer a different
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outcome. While each player has a preferred strategy, collectively the strategies result

in an inferior outcome.

In Chicken, none of the players have a dominating strategy. The best strategy

is not cooperate with the other player; therefore, swerve if the other player stays

straight or stay straight if the other player swerves. This position is adversarial as

each player has a preferred strategy, but are in a rivalry with each other.

2.1.3.5 Matching Pennies.

A simple game used in game theory is Matching Pennies [244] [265], which is

equivalent to the game Odds or Evens and is the two strategy equivalent of Rock,

Paper, Scissors. In the game, two children try to determine who is required to do the

nightly chores. The children first determine who is ”same” and the other is ”different”.

Then each child places a penny face up or face down in their palm concealing it from

the other player. The children reveal both coins simultaneously; if both coins match

(both coins are heads or both are tails) then the ”same” child wins, otherwise if they

are different (one coin is heads and the other is tails) then the ”different” child wins.

Figure 2.5 shows the normal form for the game of Matching Pennies.

The game of Matching Pennies is a zero-sum game as shown in Figure 2.5. Given

the pure strategies, there is no set of pure strategies where both players would switch

strategies Therefore the equilibrium is obtained by playing mixed strategies. Each

strategy has an equal probability of being played, resulting in each player receiving

an expected payoff of zero. The mixed strategy makes the opponent indifferent to

playing pure strategies, so neither player has incentive to switch to another strategy.

2.1.3.6 Battle of the Sexes.

Another classical game in game theory is the Battle of the Sexes, or Bach or

Stravinsky [270], a coordination game between two-players. In the game a husband

and wife have agreed to meet for an evening together, but neither can remember if
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Figure 2.5: The Game of Matching Pennies - Normal Form.

they decided to attend an opera performance or a football game. It is considered

common knowledge that both will forget. The husband prefers to attend the football

game, while the wife prefers to attend an opera performance. Both the husband

and the wife prefer to be at the same event instead of different events. The goal of

the game is to determine where each should go assuming they cannot communicate.

Figure 2.6 shows an example payoff matrix for this game.

The Battle of the Sexes has two pure strategy Nash equilibria, where the couple

either attend the opera or a football game. A mixed strategy Nash equilibrium exists

in both games, where the players choose to attend their preferred event more than

the other. This means the Nash equilibria are deficient in some way. In the pure

strategy Nash equilibria, one player will consistently do better than the other, while

the mixed strategy Nash equilibrium will cause the players to appear at different

events the majority of the time.
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Opera

Football

Opera Football

Wife

Husband

(3, 2) (1, 1)

(2, 3)(0, 0)

Figure 2.6: The Game of the Battle of the Sexes - Normal Form.

2.1.4 Beyond Normal and Extensive Forms.

There are game theoretic representations for player interactions other than

normal and extensive forms. These other representations provide important models

for representing realistic interactions, where the games may not be finite and instead

repeated with no end or that the set of agents is uncountably infinite. Repeated

Games, Bayesian Games, and Stochastic Games provide richer models with which to

analyze player interactions.

2.1.4.1 Repeated Games.

In real-life strategic situations, players interact over time often repeating the same

interaction. This happens where trust and social pressure exists between multiple

parties, such as trades without a legal contract. Chamberlin describes a repeated

game where oligopolists my collude on higher prices [69]. In 1963, Macaulay observed

the relationship between a business and its suppliers are largely based on reputation

and the threat of losing future business [228].
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Repeated games do not allow for the set of actions available to the players or

the payoff functions to change according to the past play of the players[115]. It is

possible for the action taken by one player to open up new actions for opponents

in real-life, for example war where mass killings can change public option. Payoffs

can also change overtime in real-life, for example availability of computer network

resources may not be devastating for short outages while long term outages are more

costly. This limits the ability of repeated games to model phenomena such as business

investment in capital or learning about the physical environment [115].

A repeated game is a situation where the same game is played multiple times

consecutively by the same players. This repetition allows for the possibility the players

will utilize cooperative strategies during interaction that are not available in one-shot,

or non-repeated, games. The specific game being repeated is called a stage game (i.e.,

each time a game is played it is a stage in the repeated game). The Prisoner’s Dilemma

is shown in Figure 2.7 as a two-round, finitely-repeated game in normal form and in

Figure 2.8 in extensive form.

Figure 2.7: Two-Round, Prisoner’s Dilemma in Normal Form.
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Figure 2.8: Two-Round, Prisoner’s Dilemma in Extensive Form.

The normal form representation of a repeated game, similar to Figure 2.7, hides

key components of the game. These key components are important and are [327]:

• Do the other players know what their opponent(s) did earlier?

• How much to the players remember of the past?

• What is the utility of the entire repeated game?

These key components are approached from two different types of games: finitely

repeated, or finite-horizon, games where the game is repeated but eventually ends

and infinitely repeated, infinite-horizon, games where the game is repeated but

indefinitely.

In repeated games, players have the ability to cooperate from round to round.

The key to cooperation is that the players must have incentive to follow through on

the commitments they have made to other opponents. The multiple round Prisoner’s

Dilemma is an example of the ability of players to cooperate in a finite game.

In the Prisoner’s Dilemma, for any number of rounds greater than one, the

dominant strategy in the last round is to defect no matter what happened in the past.
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The dominant strategy is common knowledge among players, so the players cannot

affect the outcomes of the last round. Thus in the second-to-last round the dominant

strategy is to defect. Using induction (backwards-induction) the only equilibrium in

the finite repeated Prisoner’s Dilemma is to defect since none of the players can make

a credible promise of cooperation.

This allows the outcome of a finitely repeated game to be determined by analyzing

a one-shot version of the same game. Backward induction will always lead to the same

subgame perfect Nash equilibrium (SPNE). It is not always the case a finite game will

empirically lead to backward induction, while backward induction in a finite game is

logically correct assuming all players are rational.

In 1978, Reinhard Selten proposed the chain store paradox [322]. He proposed

a finitely repeated game with two players, where the incumbent firm is a monopolist

with a chain of stores in twenty different locations. At each location, the chain store

is challenged by a rival firm. This game is a sequential game, in which the first firm

decides whether to enter or not at the first location then the chain store must decide

to fight or accommodate. Play is continued with the next firm deciding, etc. Using

backward induction, the chain store will accommodate in the last round and will

therefore accommodate in every round of the game. Selten calls this the “induction

hypothesis” and shows the chain store can reach a better outcome by fighting the

first fifteen rivals and accommodating the last five.

If a game is repeated, as long the number of repetitions is finite, then there

is an unique SPNE. This is stated formally in Theorem 4. If a stage game has

multiple Nash equilibria, then the strategies can be history-dependent. This results

in a possible SPNE in the repeated game, where for some repetitions, actions are

played that are not part of the Nash equilibria of the stage game [193].
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Theorem 4. Suppose 0 ≤ T < ∞ and the stage game has a unique (possibly mixed)

Nash equilibria, α∗. Then the unique SPNE of the repeated game is the history-

independent strategy profile σ∗ s.t. ∀ t ∈ T and ht, σ∗(ht) = α∗. Where T is the set

of game iterations or rounds numbered 1, 2, ..., n.

Payoffs in infinitely repeated games cannot be precalculated. When the infinitely

repeated game is modeled using extensive form and an infinite tree. There is no way

to attached the payoffs to any terminal nodes (as none exist in the infinite tree), or

can the payoffs be the sum of the individual stage games. The two most common way

to calculate payoffs in an infinitely repeated game are average reward and discounted

reward [327]:

• Average Reward - Let (r(1)
i , r(2)

i , ...) be an infinite sequence of payoffs for the

player i, then the average reward for player i is:

limk→∞

∑k

j=1 r
(j)
i

k

• Discounted Reward - Let (r(1)
i , r(2)

i , ...) be an infinite sequence of payoffs for

the player i, and β be a discount factor with 0 ≤ β ≤ 1, then the discounted

reward for player i is:

∑∞
j=1 β

jr
(j)
i

The sequential nature of repeated games allows players to adapt strategies which

depend on the actions chosen in the preceding games; these strategies are called

contingent strategies. Trigger strategies are contingent strategies, where a player

plays cooperatively as long as the opponents do as the same but any change by the

opponent will trigger a period of punishment. Two well-known trigger strategies are

the grim strategy and tit-for-tat [88]. In the grim strategy, the player cooperates with

their opponents until the opponent defects at which time the player will defect for
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the rest of the game as punishment. In the tit-for-tat strategy, the player plays the

same strategy as their opponent did in the previous round of the game. This means

the punishment only lasts as long as the opponent chooses to not cooperate.

The strategy space of an infinitely repeated game is large which makes it hard

to characterize all the Nash equilibria of the game. The Folk Theorem [112] does

not characterize the equilibrium strategy profiles in a game, but it does characterize

the payoffs obtained from the strategies. It states that the average rewards obtained

when in equilibrium are the same as the rewards obtained under mixed strategies in

a single-stage game, where each player receives a payoff of at least what he would

receive if opponents played minmax strategies [327].

Let a repeated infinitely game, G = (N, A, u) and r = (r1, r2, ... rn) be

the strategy profile, where N is a set of players, A a set of actions, and u a set

of payoffs. Then player i’s minmax value, the utility received with opponents play

minmax strategies and player i plays his best response, is vi.

vi = mins−i∈S−i
maxsi∈Si

ui(s−i, si)

Given a strategy profile r = (r1, r2, ... rn):

• Enforceable - The payoff profile is enforceable if ∀ i ∈ N, ri ≥ vi

• Feasible - The payoff profile is feasible if there exists rational, non-negative

values αa, such that ∀i, ri = ∑
a∈A αaui(a), with ∑a∈A αa = 1

The Folk Theorem states that for any game, G, and any payoff profile, r:

1 If r is the payoff profile for any Nash equilibrium s of the infinitely repeated G

with average rewards, then for each player i, ri is enforceable.

2 If r is both feasible and enforceable, then r is the payoff profile for some Nash

equilibrium of the infinitely repeated G with average rewards.
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The Folk Theorem stated formally [272]:

Theorem 5. Let G be a finite, simultaneous move game of complete information, let

(u∗1, ..., u∗n) denote the payoffs from a Nash equilibrium of G, and let (u1, ..., un) be a

feasible payoff of G. If ui ≤ ei ∀ i ∈ N (the set of players) and if γ is sufficiently close

to 1, then there exists a Subgame-perfect equilibrium (SPE) of the infinitely repeated

game G(γ) that achieves an average payoff arbitrarily close to (u1, ..., un).

In repeated games, the one-shot deviation principle states that for any player

when profitable deviations from a SPNE are considered, only the strategies where the

player plays as he is expected to at all round except one (i.e. at a single history the

player behaves differently) [193].

Theorem 6. Fix a strategy profile σ. A profitable one-shot deviation for player i is

a strategy σ′i , σi s.t.

• there is an unique history ht
′

such that ∀ ĥt , ĥt
′
, σ′i(ĥt) = σi(ĥt).

• ui(σ
′
i|ht

′
, σ−i|ht

′
) > ui(σi|ht

′
)

Where σi|ht is the restriction of strategy σi to the subgame following history ht.

In Theorem 6, the requirement states there is only one history at which the

strategies are different. The differences in strategies can have a significant effect on

the path of play, since all histories after ĥt
′

may depend on what was played in ĥt
′
.

The second requirement states the deviation has to be profitable. The profitability

of the deviation is defined as a conditional on history ht being reached, since strategy

σ may not lead to ht being reached. By definition this means a Nash equilibrium

can have a profitable deviation, but this cannot be the case so the following lemma

results:

Lemma 7. A strategy σ is a SPNE iff there are no profitable one-shot deviations.
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The one-shot deviation principle implies repetition of the stage-game Nash

equilibrium is a SPNE of a repeated game [193]. Formally this is stated as:

Theorem 8. A strategy profile σ is history-independent if ∀ ht and ĥt, σ(ht) = σ(ĥt)

Theorem 8 implies the existence of an SPNE in infinitely repeated games.

Lemma 9. If the stage game has a Nash equilibrium, then the repeated game has a

SPNE.

2.1.4.2 Stochastic Games.

Stochastic games where first introduced by Lloyd Shapley in 1953 [324]. In

stochastic games, the same stage game is not always repeated. Stochastic games

generalize both repeated games and Markov decision processes (MDPs). A repeated

game is a stochastic game where only one stage game is repeated, while an MDP is

a stochastic game with only one player [327].

A stochastic game is a repeated game where agents play games from a set of

games repeatedly. At any iteration in the future, the game played depends only

on the previous game and the actions chosen by the players in that previous game.

Stochastic games are a generalization of the Markov decision process. This is defined

by multiple players, one reward function per player, and the action chosen by both

players determines the transition and reward functions. A stochastic game is modeled

as [327]:

S = (Q, N, A, P, r)

– Q is a finite set of stage games

– N is a finite set of players

– A = A1 × ... × An where Ai is a finite set of actions for player i
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– P : Q × A × Q → [0,1] is the transition probability, P(q, a, q̂) is the

probability of transitioning form state q to state q̂ after action profile a

– R = r1, ....., rn where ri : Q × A → R is a payoff function for player i.

In stochastic games it is assumed the strategy space of the agents is the same

in all games in the set of stage games. Resulting in the only difference between any

game being the payoff function. This assumption can be removed without adversely

affecting the overall stochastic game [327]. Stochastic games are also often modeled

with finite state space and action sets (as shown in the previous stochastic model),

which are not needed to receive the benefit from stochastic games and can be relaxed

[241].

There are three types of strategies of interest over the strategy space of an agent

in stochastic games. A strategy space is defined as ∏t,Ht
Ai, where ht = q0, a0, q1,

a1,....,at−1, qt) denotes the history of t stages and Ht is the set of all possible histories.

Given an agent’s strategy can consist of any mixture over deterministic strategies:

• Behavioral Strategy

– is where the mixing of strategies takes place at each history independently,

instead of only once at the start of the game

– si(ht, aij ) gives the probability of playing action aij for the history ht

• Markov Strategy

– is where for time t, the action probability distribution only depends on the

current state

– si(ht, aij ) = si(ht′, aij ) if qt = qt′, where qt and qt′ are the final states of

ht and ht′

• Stationary Strategy
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– is where the strategy has no dependence, not even on time

– si(ht1 , aij ) = si(ht2 ′, aij ) if qt1 = qt2 ′, where qt1 and qt2 ′ are the final states

of ht1 and ht2 ′

For the discounted-reward payoff case, a Nash equilibrium exists in every

stochastic game. If the strategy profile only consists of Markov strategies then it

is called a Markov perfect equilibrium (MPE), and is a Nash equilibrium regardless

of the starting state of the game. MPE is similar to the subgame-perfect equilibrium

in perfect information games [327].

2.1.5 Applications to Cyber Security.

The large number of network intrusion incidents, especially Stuxnet, Flame, and

Duqu are causing a rapid evolution of malware and defense techniques. As the authors

in [331] discuss the evolution of these techniques is similar to a game between malware

authors and security analysts, with each trying to win the game by outperforming the

opponent. This shows cyber attack and defenses can be modeled as a game between

multiple players. Insight into the best strategy choices can be obtained by using a

game to model the adversarial players. In most game theory models for cyber security,

the objective is to select the security measures with the lowest cost, while achieving

the highest level of security [326]. This shows game theoretic models can be used to

guide decisions for network defense.

There is an inverse relationship between computer/network usability and

computer/network security - a double edge sword. When a system is more usable,

it becomes a liability for the operator, while a system with higher security results in

decreased usability for authorized users. When authorized users are unable to use

the system for authorized tasks, this is the same as a denial of service attack by a

potential attacker. It is necessary to realize the need to carefully balance usability

and security so authorized users are not hampered by security and give up, leading to
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the cyber-battle being lost [6]. Sometimes it is necessary to conduct trade-off analysis

to determine a balance between usability and security, while protecting critical data

and resources and minimizing the impact on authorized users.

Human administrators are able to reason and make decisions on how to use

defensive capabilities to minimize threats and allow users to maximize their usability

experience, but may overlook certain combinations of defenses [306]. Computers can

enhance the decision making of human administrators by analyzing large amounts

of data and finding all possible combinations of defensive capabilities, allowing

exceptions to be found and optimization to take place. One should not infer a human

in the loop is not needed, instead this shows the complexity of the problem and how

computers can aid in finding a solution. When using game theory, it is necessary for

the model to be as accurate as possible in order to achieve the best possible solution

to the real-world situation.

Scalability of a game model can be problematic as the number of variables can

grow exponentially. This leads to most models using a simplification of the real-

world problem in order to reduce the variables and the complexity of the model. One

simplification most models use is to reduce the game to a two player game, such as one

attacker and one defender. Another simplification is to reduce the number of strategies

in the game model, because for each additional strategy in the player’s strategy set the

number of outcomes increases by the total of the other players’ strategies. Stability

concerns lead to models with two players, each with two strategies. For example, in

[72] there is an attacker and a defender, while the attacker can attack or not attack

and the defender can defend or not defend.

2.1.6 Related Work to Cyber Security.

Previous work has built information warfare models using game theory. David

Burke [62] presents an information warfare model, that is a repeated non-zero sum
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game with incomplete information. The model consists of two players - an attacker

and a defender. Defenders try to protect the most valuable information while

attackers try to obtain highly valuable information. Each player is one of three types:

social, infrastructure, and node. Each type of player prefers one type of information to

all others (this player realizes higher payoffs for defending/obtaining this information).

The social player prefers sensitive information such as passwords, names, phone

numbers, etc. This player represents banks, and insurance companies. The

infrastructure player prefers sensitive network information, such as internet addresses,

network architecture, Transmission Control Protocol (TCP)/Internet Protocol (IP)

ports and services, etc. This player represents telecommunication companies or

Internet Service Provider (ISP)+. The node player prefers sensitive computer

equipment information, such as hardware addresses, computer configurations, file

names, encryption keys, etc. This player represents the end user such as businesses

and home users. This model represents the logging and network status sensing

normally used in enterprise networks (e.g. security audit logs, intrusion detection

system, etc.). This is done by allowing the defender to carefully observing the payoffs

the defender receives. The defenders have three possible actions: social engineering

defense, infrastructure defense, and node defense. Attackers have three possible

actions: social engineering attack, infrastructure attack, and node attack. Payoffs

are represented in US dollars for each type of information. This work uses players to

represent each component in a complex network, such as the internet. The attacks

are abstract and do not get into detail.

Tait [348] also presented an information warfare model. In his information

warfare model there are four main elements: players, playoffs, information, and

strategies. A set of players consists of an attacker and a defender. Each player a

limited number of resources to use (funds, strategies, manpower, etc.). Each player
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is assumed to be rational and will seek to maximize his or her expected payoff. The

attacker’s strategies include: attack system integrity, attack system confidentiality, or

attack systems availability. The defender’s strategies include: defend system integrity,

defend system confidentiality, or defend systems availability. Each player may also

choose to not implement a strategy. In this model the strategies are symmetrical

across players, but the actions selected to carry out each strategy may be different.

This work is based on the CIA model: confidentiality, integrity, and availability, which

is used to determine network and data security. An important piece of this work is

the constraint of limit resources available to deploy an agent.

Vejandla, et al. [358] proposed a method for generating gaming strategies for the

Attacker-Defender game using evolutionary approach. The model takes into account

objectives like cost, time, reward and performance. They use a memory-based Multi-

objective evolutionary algorithm (MOEA) to generate the series of actions with the

highest payoffs. The MOEA performed better than the existing approaches used to

currently solve anticipation games.

Monderer and Tennenholtz [243] introduced the idea of Distributed Games. In

this model, each player controls a number of agents, although the agents do not

appear in the formal definition of the distributed game. Each agent participates in

an asynchronous parallel multi-agent game and there is one agent for each location

(node). Agents communicate by broadcasting messages. The Prisoner’s Dilemma

is played at all locations by each agent based on the messages received from other

agents. The overall goal of this research is to show the cooperative nature of the

agents.

Kivimaa, et al. [196] have presented an expert system for modeling graded

security. Graded security is intended to determine a reasonable set of security based

on a set of security requirement levels. The goals of security are confidentiality,
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integrity, availability, and satisfying mission criticality. Four levels are used for

each goal: 0, 1, 2, 3. This represents the required security; level 0, represents the

absence of requirements. Nine security measures are used to achieve the security

goals: user training, antivirus software, segmentation, redundancy, backup, firewall,

access control, intrusion detection and encryption.

Several applications over the last few years have used multi-agent systems

to allocate limited resources in order to protect mission critical infrastructures

[20, 30, 184, 200, 281]. These multi-agent systems have been used for the Los Angeles

International Airport, U.S. Federal Air Marshals Service, U.S. Coast Guard, U.S.

Transportation Security Agency, and Urban Security in Transit Systems. Multi-agent

systems are also being applied to protecting forests [187] and police patrols for crime

suppression [268].

2.1.7 Deception in Game Theory.

Deception in game theory has been mostly studied in turn-based, or dynamic

games, where a player choose an action then reports the action or outcome to the

other player. This type of game is called signaling games, after the “signal” sent

between players. The signal is subject to deception, since the player can be truthful,

deceptive, or choose not to send a signal.

Carroll and Grosu [67] study network defense using deceptive signaling games.

In their research, the defender can disguise a normal computer as a honeypot, a

honeypot as a normal computer, or use no disguising techniques. The attacker has

the ability to test the system type and the defender sends the appropriate signal,

deceptive or truthful. The authors showed that deception is an equilibrium strategy

for the defender, either by disguising all honeypots as normal computers or all normal

computers as honeypots, provides an increase in utility for the defender over using

only truthful signals.
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Multi-turn attacker-defender games are used by Zhuang to study deception [376].

In the game, a defender type is randomly selected from a set of possible defender

types and at each turn of the game the defender selects a strategy and “signals” the

attacker of the selected strategy. The defender may be either truthful or deceptive.

The attacker then uses the signal to update his belief of the defender’s true type and

selects an attack strategy. After each turn the payoffs are used to update the belief

state until the game ends. The authors state, given their game, deception can be a

beneficial strategy for the defender.

Hespanha, et al. [82] modeled an attacker-defender game where the defender

has three units available to defend two locations. In the game the defender signals

the locations of the units either by sending a truthful or deceptive signal or not

camouflaging the units revealed to the attacker. The authors also discuss the

possibility of a malfunction of the either the attacker’s sensors or the defender

camouflage, which may mean the signal seen may not be correct. The authors

conclude that the use of deception can render the information collected from sensors

and other methods to be useless to the attacker.

Deception has also been studied in repeated games. In this type of game the

players both choose an action and make their moves simultaneously. Depending

on the game, the players may receive information about how the environment stat

changed between selecting moves. Pursuer-evader games are commonly modeled with

this type of repeated game. Yavin [370] studies pursuer-evader deception, where both

players choose a strategy based on the bearing of the other player and the distance

between them, by corrupting the evader’s bearing signal to the pursuer. The author’s

goal is to determine the optimal (or near-optimal) pursuit strategies for a pursuer

when faced with deceptive or incomplete information.
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2.1.8 Bounded Rationality.

Bounded rationality is where a players rationality is limited in the decision

making process by the information the player has, cognitive limitations of their minds,

and time available to make the decision [330]. H.A. Simon originally proposed the

concept of bounded rationality as an improvement to the model of human decision

making [329]. Bounded rationality helps to explain why the most rational decision is

not always the decision chosen by the player in game theory or decision theory.

Bounded rationality does not mean irrationality, since players want to make

rational decisions, but cannot always do so [188]. Players are often very complex,

but in order to be fully rational they need unlimited cognitive capabilities [321].

The cognitive capabilities of players are limited and therefore cannot conform to full

rationality. Players will use the cognitive resources they have, with the information

available, and often within time constraints to reach a decision that is as rational

as possible. Bounded rationality allows the player to make a decision based on

their perceived state of the game or environment, leading to multiple players having

different perceptions of the game or interaction.

2.2 Decision Theory

This section provides an overview of decision theory, as decision theory is one

method to theorize about decision-making. In any given situation, there are actions

which an agent can choose between and make a choice in a non-random way. The

choose between actions are goal-directed activities [157]. Given a set of actions,

decision theory is concerned with goal-directed behavior to reach a desired outcome.

2.2.1 Overview.

Decision theory is a formal mathematical theory about how decision-makers make

rational decisions. It is also known as normative decision theory [280, 301], Bayesian

decision theory [157], rational choice theory [319], and statistical decision theory [47].
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Decision theory predates the development of game theory. Decision theory can be

divided into three parts: normative, descriptive, and prescriptive [26, 145].

• Normative Decision Theory [280, 301] - studies the ideal agent and the decisions

this perfectly rational agent would make, often referred to as the study of how

decisions should be made.

• Descriptive Decision Theory [340] - studies the non-ideal agent, such as humans,

and how they make decisions, often referred to the study of how decisions are

made in reality.

• Prescriptive Decision Theory [161] - studies how non-ideal agents, given their

imperfections, can improve the decisions they make.

2.2.2 Basis For Theory.

Normative decision procedures are defined by beginning with some axioms of

rational decision making behavior, then use the axioms to derive a characterization

of rational decision making [299]. Von Neumann and Morgenstern present the first

axiomatization for decision theory. They give four axioms which an agents preferences

must follow in normative decision theory [259]:

• Completeness - Each agent must have a preference for each pair of outcomes or

be indifferent between the two.

• Transitivity - If A is preferred to B and B is preferred to C, then A is always

preferred to C.

• Independence - Preferences hold independent of any other possible outcomes.

If A is preferred to B, then A is always preferred to ApB (read as A with

probability p else B), which is preferred to B.
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• Continuity - If A is preferred to B, then when given the choice between CpA

(read as C with probability p else A) or CpB, then CpA is always preferred to

CpB.

These four axioms lead to the conclusion that “a rational decision maker will

act according to their degree of belief which conforms to probability calculus”[100].

For example, a decision theorist may describe a rational decision maker as having the

following characteristics [299]:

1) A rational decision-maker’s behavior is guided by their degree of belief in the

occurrence of an event. For example, if a sports fan is offered the choice to win

$500 if their team wins this week or $500 if the team wins next week, but can

only select one option. A rational sports fan would make their decision based

on the belief of the team’s best chance to win, given the opponent, weather

conditions, etc.

2) When given the option between being guaranteed breaking even in a game or

the possibility of breaking even with a chance of losing, a rational decision maker

will always select being guaranteed breaking even.

These five characteristics lead to a rational decision maker that acts with the

following behaviors [157, 356]:

1) has a set of beliefs represented by a probability distribution (P) over all possible

outcomes

2) assigns an utility (U) to every possible outcome using an utility function that

results in preferred outcomes receiving higher utilities

3) selects a strategy or action (A) by determining the expected utilities (EU) and

selecting the highest EU, thus maximizing expected utilities
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2.2.3 Bayesian Decision Theory.

Bayesian decision theory, or Bayesianism, is based on subjective utilities and

subjective probabilities. It can be described by the following four principles, where

the first three refer to the agent with probabilistic beliefs and the fourth refers to the

agent as the decision-maker [157].

• Coherent set of probabilistic beliefs - where the agents beliefs comply with the

mathematical laws of probability.

• Complete set of probabilistic beliefs - where each outcome is assigned a

subjective probability

• Beliefs are updated according to the agent’s conditional probabilities - that is

beliefs are updated according to Bayes’ Rule: p(A—B) = p(A&B)/p(B).

• The outcome with the highest expected utility is always chosen.

In descriptive Bayesianism, decisions made by decision-makers satisfy the

previous four principles. With normative Bayesianism, rationality is key, decisions

made by rational decision-makers satisfy the previous four principles. Subjective

Bayesianism does not present a particular relationship between the subjective utilities

used or the objective frequencies, such as a coin flip.

Bayesianism is not as popular in practical decision situations. This is because of

the subjective probabilities and utilities are hard to test. Objective probabilities and

utilities lead to predications that can be validated through testing.

Bayesian games have been proposed by Harsanyi [160]. Harsanyi claimed a game

of incomplete information can be captured by subjective probability distributions over

the outcomes without loss of generality. This is done by introducing a set of types

and each player’s belief about the types. Bayesian games, based on Harsanyi’s claim,
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allow all players to share a common set of the possibilities of the game structure [313].

This claim is often controversial as real interactive situations may lead to possibilities

that are not shared by all players [138].

2.2.4 Weakness of Decision Theory vs. Game Theory.

The “outguessing problem” is based on a player’s worry of what the other player

may do. There is nothing in the decision theory axioms that would encapsulate the

outguessing problem. This would imply worrying is not rational under decision theory.

A normative decision maker has a probability distribution over all possible outcomes,

and a probability distribution of the adversary’s behavior given the possible actions.

Unlike game theory, decision theory does not have a way to predict a column’s action

based on the column’s understanding of the row’s strategy [356]. In this case decision

theory does not require columns to select actions according to rational behavior; it

only requires that a row has the ability to assess the intent of column during the

game.

It is possible for the decision-maker to use the two different approaches during

game play. For example, decision-makers may use a risk adverse approach where the

agent prefers actions that lead to less risk in the expected outcome values, where the

agent could also use a risky approach where the agent prefers actions that lead to

more risk in the expected outcome values, but also higher expected outcome values.

This is especially realistic in retirement planning, a person normally starts out risky,

choosing investments with high risk and volatility, but with high reward. As the

person ages and approaches retirement, they start accepting less and less risk. Under

decision theory, modeling a decision-maker with two different approaches is difficult.

None of the decision theory axioms determine how the probability distributions

are derived. It is possible to model a decision-maker that uses multiple approaches the

decision-maker could use game theory to gain insight into the opponent’s behavior by
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using game theory to derive the probability distributions and explain the opponent’s

behavior.

Decision theory lacks the ability to quantify the risk of being outguessed during a

game. During a game, belief weights are associated with the column that results in the

least desirable outcome, since the belief weights corresponding to the most dangerous

column may be less than one [356]. This may lead to actions being discarded that

would help mitigate the worst-case condition. This idea stems from the fact that

in the real world, players may not be able to reach their preferred or most desired

outcome because their opponent has an unknown action or information, but at the

same time they could guard against reaching their least preferred outcome by taking

risk into account.

None of the four axioms in normative decision theory determine how to derive

the probability distribution corresponding to the beliefs of the opponent player. This

means that playing a game according to the player’s beliefs does not make any decision

irrational, but the decision may be ineffective if the beliefs used as the basis for the

probability distribution do not correspond to reality, leading to a delusion for the

player.

Within decision theory it is implied that a probability distribution can be

determined by the decision-maker [356]. This is without regard for the number

of actions, strategies, players, or opponents. It is also implied the probability

distribution of the situation it models. In real world events it may be hard to create

realistic probability distributions, do the possibility of asymmetric information.

2.2.5 Summary.

This section discussed decision theory as a method to theorize about decision-

making. It requires a probability distribution to be derived by the decision-maker.

The probability distribution must be consistent according to the axioms of decision
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theory, but decision theory does not specify how to update the probabilities. This

leads to Bayes’ rule being used in Bayesian decision theory to update the probabilities.

This allows decision theory based on a set of actions, given the axioms, to reach a

desired outcome using goal-directed behavior.

2.3 Game Theory vs. Decision Theory

Game theory is a bag of analytical tools designed to help understand the

phenomena that observed when decision-makers interact [270]. Decision theory is

a formal mathematical theory about how decision-makers make rational decisions as

they interact with their environment. What is the difference between game theory

and decision theory? There is a division between decision theory where the outcome

depends on the players decisions and the impersonal universe, while game theory

depends on the decisions made by interacting with other players.

2.3.1 Overview.

Throughout the literature on decision theory and game theory there are slightly

different views on the division between the two theories. As shown in Figure 2.9a -

2.9d there are four possible high level views of the division between decision theory

and game theory. While it is possible decision theory and game theory are completely

independent of each other (as shown in Figure 2.9a, this is not considered in the

literature. The application of the theories also does not support this.

It is possible for game theory to be part of decision theory, as shown in Figure

2.9b. Given the definitions of decision theory and game theory from the literature,

this does not seem likely. Most definitions define decision theory as more specific

theory than game theory. For example, the definitions presented in this appendix

define game theory as a bag of tools and decision theory as a mathematical theory or

tool.
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Some literature considers some parts of decision theory and game theory to be

distinct, while there is some overlap between the two, as shown in Figure 2.9c. Often

the opponent of the player in question is different between the two (with decision

theory focusing on a player against nature and game theory focusing on the interaction

of evenly matched players). There are some characteristics shared by both theories.

For example, decision theory and game theory make use of rationality and preference

ordering, as well as probability theory.

(a) Independent Theories (b) Game Theory part

of Decision Theory

(c) Related Theories (d) Decision Theory

part of Game Theory

Figure 2.9: Possible Division of Game Theory and Decision Theory.

It is also possible for decision theory to be part of game theory, as shown in Figure

2.9d. Given the definitions of decision theory and game theory from the literature,
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this is possible. This is due to the fact that decision theory is defined as a more

specific theory than game theory. Using the definitions presented in this appendix, it

is easy to see that if game theory is a bag of analytical tools and decision.

Often the division appears to be arbitrary. The arbitrary division appears when

the players in the game are borderline players, such as animals or small children.

Other players could only be interacting minimally, such as workers in a building and

facilities management. The rest of this appendix discusses the differences between

decision theory and game theory.

2.3.2 A Short Story.

One of the easiest ways to see the differences between game theory and decision

theory is through an example. While this story is a bit contrived, it does show

differences in decision-making. The following short story, taken from Scientific

American, illustrates the difference between game theory and decision theory [351]:

A hat seller, on waking from a nap under a tree, found that a group of

monkeys had taken all his hats to the top of the tree. In exasperation

he took off his own hat and flung it to the ground. The monkeys,

known for their imitative urge, hurled down the hats, which the hat

seller promptly collected.

Half a century later his grandson, also a hat seller, set down his

wares under the same tree for a nap. On waking, he was dismayed

to discover that monkeys had taken all his hats to the treetop. Then

he remembered his grandfather’s story, so he threw his own hat to the

ground. But, mysteriously, none of the monkeys threw any hats, and

only one monkey came down. It took the hat on the ground firmly in

hand, walked up to the hat seller, gave him a slap and said, “You think

only you have a grandfather?”
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In the story, the grandfather uses decision theory to reach the decision that since

monkeys will imitate actions, then to get his hats back he just has to throw his hat on

the ground. Here decision theory would apply since the monkeys can be considered to

be acting naturally given their nature. The grandfather makes his decision without

assuming or considering the monkeys are rational or think like himself.

The grandson, on the other hand, uses decision theory to reach the decision to

throw his hat on the ground, recalling his grandfather’s story. While using decision

theory, the grandson never considered the monkeys as strategic decision-makers. If

he would have used game theory, he would have reasoned that if he learned the hat

trick from his grandfather, then the monkeys would have learned the hat trick from

their grandfathers.

2.3.3 Questions From the Theories.

Decision theory deals with single player games, or games where a player is against

nature, with the focus on preferences and the formation of beliefs [220]. The implicit

assumption in decision theory is nature is not cheating, interfering with, or assisting

the player; nature continues to function without regard to what the player wants

wishes to accomplish.

The main focus of decision theory is on one question:

- How do individuals make decisions?

Game theory deals with multi-player games, often involving groups of people,

where players are in cooperation or competition with competing strategies. It

explicitly assumes the other players are rational and may be cheating, interfering

with, or assisting the player or other players. In game theory it is necessary to

interact with other rational and intelligent players in order to resolve the conflict.

The focus of game theory can be summarized with two questions about the

interaction of the decision-makers [364]:
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- How do individuals behave in strategic situations?

- How should these individuals behave?

2.3.4 The Differences Between Game Theory and Decision Theory.

The first difference is how the decision is made to select an action with two

actions that have equal expected utilities[356]. Decision theory sees both actions as

desirable, so it would be rational for either action or a combination to be chosen.

This follows directly from the axioms of decision theory. In game theory, the other

player(s) is considered and with this in mind, even with two actions of equal expected

utilities, the player may prefer one or the other. For example, in a conflict with an

enemy, choosing the one action out of the two, which leads to a lower expected value

for the opponent would be preferred. Otherwise, if the player were playing family

member, they would prefer the action that leads to the higher expected value for the

opponent.

The second difference is how to handle when a player is wrong about their

opponent’s intent. Generally in decision theory, if there are two different views, then

these views are combined in the probability distribution. This leads to a player’s

best guess always being used, which is the only rational behavior [314]. In game

theory, two different views can be considered during game play and become part of

the rational reasoning expected with game theory. This allows the game theory based

solution to maximize the expected value while minimizing the chance they are wrong

about their opponent’s intent.

2.3.5 Where the Two Meet.

The foundations of decision theory do not guide how the probability distribution

are derived. In order to model a decision-maker that uses more complex interactions,

the decision-maker could use game theory to gain insight into the opponent’s

behavior by using game theory to derive the probability distributions and explain the
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opponent’s behavior. In this environment, game theory adds value to the decision

analysis through its suggestion on how the decision maker should form its beliefs about

the behavior of the environment, i.e., about the actions of players whose behavior is

modeled as uncertain [50].

2.3.6 Summary.

While game theory and decision theory are similar on the surface, after a closer

look they are different. Game theory focuses on multi-player games often involving

groups of people where players are in cooperation or competition with competing

strategies. While decision theory focuses on single player games or games where a

player is against nature with the focus on preferences and the formation of beliefs.

This chapter discussed the differences between game theory and decision theory, as

well as the similarities between the two theories.
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III. Hypergame Preliminaries

This chapter describes the background and related work for understanding

hypergame theory. Section 3.1 provides background on hypergame theory focusing on

its ability to model complex conflicts with unbalanced information. Section 3.2 covers

application of hypergames where competitive nature and proprietary information

often lead to missing information and a desire to introduce misperceptions (such

as in military conflicts, sports, resource allocation, business, and cyber). Related

work in hypergame theory is discussed in Section 3.3.

3.1 Hypergame Theory

Game theory, decision theory, and hypergames can be used to model conflicts

as games. When very little is known about the opponents, game theory is used for

adversarial reasoning. Decision theory is a better choice if the opponents are well

known. If one or more of the opponents are playing different games because they are

not fully aware of the nature of the game, hypergames can be used to reason about

subgames that are shared between opponents. Decision theory is not discussed in

the following section because in most cyber operations the opponents are not well

known. This may be due to the trouble of attribution, government operations that

are classified, or the global nature of the Internet.

“A conflict is a situation in which there is a condition of opposition [116], and

parties with opposing goals affect one another [106].” The study of how decision

makers interact during a conflict is known as game theory. An overview of game

theory and its applications are given in Chapter 2. Game theory analysis often falls

short when one player has an advantage over the other in a conflict. When one or

more players lack a full understanding, have a misunderstanding, or incorrect view of

the nature of the conflict, hypergame theory can be used to model the conflict.
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Hypergames extend game theory by allowing for an unbalanced game model

that contains different view of the game representing the differences in each player’s

information or beliefs. The unbalanced game model allows for a different game model

for each player’s view, while having overlap where there is common knowledge. The

solution to the hypergame model is dependent on the player’s perception of the game

model, including how the player views the game and how the player believes the

opponent is viewing the game. Because of the multiple game models, each model

has to be analyzed in order to determine the outcome to the hypergame. This allows

hypergames to more accurately provide solutions for complex real world conflicts than

those modeled by game theory and excel where perception or information differences

exists between players.

3.1.1 Decision Making and Learning.

There is a feedback loop between experience and views in a hypergame [310]. This

feedback loop is taken from [310], extended with hypergame concepts, and is shown is

shown in Figure 3.1. Every player in a hypergame starts with a set of perceptions. A

player’s perceptions consist of beliefs, preferences, knowledge, and subgames. Beliefs

are based on past experiences and the player’s environment. Preferences represents

the player’s preferred ordering of actions and preferred results of the playing the

game and it is unique to each player. Knowledge of the game (which may be faulty

or incomplete) is important to forming player perceptions. A player uses orientation

and observation, along with the player’s perceptions in order to make a decision. The

player orients their view of the environment and observes the experiences of the game.

Each player has a set of experiences. The experiences can consist of deception,

subversion, payoffs, and denial. Players may be aware of certain aspects of their

experiences, such as payoffs, and may be unaware of other aspects such as deception

or subversion. Experiences provide feedback and elements of surprise in order to allow
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Figure 3.1: Relationship Between Decision Making and Learning.

a player to learn and update/change their perceptions throughout the course of the

game.

This process when used in real life conflicts requiring decision making, often

results in the process retaining temporal aspects. Often a time dependence develops

and becomes an integral part of the decision making process.

3.1.2 Hypergame Basic Concepts.

Hypergames, first discussed by Bennett [34], are used to model the games where

one or more players are playing different games [43]. Hypergame theory decomposes

a single situation into multiple games. By reasoning about multiple games, the

outcome to the single problem can be improved. Each player in a game has their

own perspective of how the other players view the game with regards to the possible

actions, and player preferences. In a hypergame each player may [106]:

• have a false or misled understanding of the preferences of the other players
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• have incorrect or incomplete comprehension of the actions available to the other

players

• not have awareness of all the players in a game

• have any combination of the above; faulty, incorrect, incomplete, or misled

interpretations

A player’s choice of actions reflects the player’s understanding of the game

outcomes; the player chooses actions based on the way they perceive reality, which

may not be the true state of reality. Figure 3.2 shows a basic two player hypergame

between ”row” and ”column”, where Ci and Ri are different actions each player could

take.

Figure 3.2: Example of a hypergame.

Hypergame analysis is conducted by first examining Row’s belief about Column’s

reasoning, and then by examining Row’s available actions [353] [354]. In Figure 3.2,

the game on the left shows how Row thinks Column will reason about the game.

Based on this Column will play C2 while Row plays R2, the Nash equilibrium concept

from game theory. This allows the experience and intuition of the decision maker to be
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incorporated into hypergames. For example, this could apply to planning variables,

such as a novel course of action for Row or Column’s lack of time to plan, or to

situational variables, such as the hidden location of Row’s resource [106].

Hypergames allow for domain knowledge incorporation, therefore it does not

require the game theory equilibrium condition [106]. Furthermore, the standard

rationality arguments from game theory are replaced by knowledge of how the

opponent will reason [106]. It is also valid to assume unequal availability of

information in hypergames, when many players in games have imperfect information.

Wang et al. [361] proposed different levels for developing mathematical

hypergame models based on perceptions of the players. The lowest level (level 0)

is a basic game with no misperceptions among the players. In a first level hypergame,

players have different views of the game but are not aware of the other players’ games.

In a second level hypergame, at least one player is aware there are different games

being played and that misperceptions exist. A third level hypergame is possible and

is when at last one player is aware that at least one other player is aware different

games are being played. A nth level hypergame can be described, but the authors

state this does not add to the hypergame model, instead it adds complication and

excess information not needed for the hypergame analysis. This not only allows the

perceptions of the players to be incorporated into the hypergame model, but varying

degrees of perceptions in order to reach a more complete game model.

3.1.3 First Level Hypergame.

A game G is defined by a set of preference vectors, Vn , for all game players;

where n is the number of players, and Vi is the preferences vector for player i.

G = {V1, V2, . . . , Vn}

In game of complete information, all players know the other player’s preference

vectors, therefore all players are playing the exact same game. In hypergames, one
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or more players may have incomplete information, that leads players to form slightly

different versions of the same game or completely different games altogether. A game

formed by player q includes any and all lack of information about the conflict, which

is denoted by:

Gq = {V1q, V2q, . . . , Vnq}

Where Viq represents the preference vector of player I as understand(perceived)

by player q.

A first level hypergame H is a set of games as understood from each player:

H = {G1, G2, . . . , Gn}

Table 3.1 shows a hypergame in matrix form.

Table 3.1: Matrix form of a hypergame.

Player Perceived Game perceived by player

1 V11 V12 . . . V1n

2 V21 V22 . . . V2n

...
...

...
...

...

n Vn1 Vn2 . . . Vnn

G1 G2 . . . Gn

Since players may have different misperceptions, each player may make a different

decision which will result in a different outcome to the conflict. A mapping function

can be used to relate the outcomes between the player’s individual games. Bennett

[36] gives an algebraic description of this problem, while an application is presented

in Bennett et al. [42].

58



Game analysis is performed by treating each player’s game separately. This

means player q’s game is analyzed from q’s understanding about the conflict. The

decisions made and the strategies chosen by q depend on q’s interpretation of the

conflict, therefore a given player may not perceive all outcomes of a game. The

player cannot unilaterally change from an perceived outcome, so for the purpose of

stability analysis the outcome is stable for that player [106]. Therefore an unknown

outcome to a player can be stable in the hypergame analysis. When a game contains

an unknown outcome it is known as strategic surprise.

For player q’s game, an outcome is stable if the outcome is stable in each of q’s

preference vectors. This means the equilibriums of q’s game are only the outcomes q

believes would lead to a resolution of the conflict. Hypergame equilibriums depend

on each player’s perception of the stability of the outcomes. When determining

equilibriums of hypergames, the equilibriums of each player’s game are not needed,

but these individual equilibriums can be useful to demonstrate what each player

believes will happen.

3.1.4 Second Level Hypergame.

A second level hypergame is a hypergame where at least one player is aware a

hypergame is being played. This situation can happen if at least one player perceives

another player’s misperception [106]. Player q’s hypergames is defined as the (hyper)

game perceived by player q. This hypergame is denoted as:

Hq = {G1q, G2q, . . . , Gnq}

Where Giq is the game of the ith player as it is perceived by player q. It is not

necessary for player q to be one of the players who are aware a hypergame is being

played. If set Hq is missing a player’s game, it is because player q does not perceive

the game.
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A second level hypergame is a set of hypergames perceived by each player,

denoted as:

H2 = {H1, H2, . . . , Hn}

Table 3.2 shows a second level hypergame in matrix form, where the hypergame

for player p is the pth column. Each element of the matrix is a game made up of a

preference vector for each player.

Table 3.2: Matrix form of a second level hypergame.

Player Perceived Game perceived by player

1 G11 G12 . . . G1n

2 G21 G22 . . . G2n

...
...

...
...

...

n Gn1 Gn2 . . . Gnn

H1 H2 . . . Hn

Similar to a first level hypergame analysis, game analysis of second level

hypergames is performed by treating each player’s game separately. This allows

stability information to be determined for every preference vector in a conflict. This

information can further be used to determine each game’s equilibrium.

The preference vectors of each player’s game provides the stability information

that determines the equilibriums of the second level hypergame. ”Just as the

equilibriums of a game within a hypergame are not needed to determine the

equilibriums of that hypergame, so the equilibriums of a hypergame within a higher

level hypergame are not needed to determine the equilibriums of that higher level

hypergame.” [106]
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3.1.5 Hypergame Normal Form.

Russell Vane [356] incorporates a player’s beliefs with the opponent’s possible

actions in the hypergame model. Vane refers to this as Hypergame Normal Form

(HNF) this is based largely on the strategic from used in standard game theory

analysis, as shown in Figure 3.3. Like the strategic form, HNF contains a grid with row

and column strategies labeled and utility values defined for each cell where strategies

intersect.

Figure 3.3: Hypergame Normal Form (HNF) [356].

The HNF grid has additional sections which contain hypergame situational

information. This hypergame situational information is represented by Row Mixed

Strategy (RMS) and Column Mixed Strategy (CMS). A RMS is a hyperstrategy

based on what the row player believes in the game being played by the column

player. Hyperstrategies are strategies that do not apply to the full game, except for

the hyperstrategy R0 which represents the Nash Equilibrium for the full game. A
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CMS represents row’s beliefs about the percentages column will use when selecting a

strategy. The Nash Equilibrium for column for the full game is represented by C0. A

CMS cell containing a zero (0) indicates column is playing a subgame with strategies

that are either unknown or disregarded. Another section contains belief contexts

represented as the percentage that row believes the adjacent CMS will be selected

and played by column. Belief contexts will sum to one since they represent all possible

strategies from row’s view, any remainder corresponds to the Nash Equilibrium belief

context.

The HNF is completed by first calculating the Nash Equilibrium for the full game

by determining the utility values, which is the input for R0 and C0. The CMSs can be

calculated manually by knowing the player’s preference for the strategies or by finding

the Nash Equilibrium of a subgame for the column player. A weight is assigned to

each CMS as a belief context value, which is used to determine row’s belief of column

using that strategy. These weights are then used to calculate the amount that affects

row’s expected utility, CΣ. Hyperstrategies can be placed in the RMS section for the

row player. Expected utility values are calculated for the full game CMS, C0, and

CΣ in order to determine the effectiveness of which RMS hyperstrategy row should

select.

The effectiveness of RMS hyperstrategies is measured using three levels:

ineffective, partially effective, and fully effective. These levels are shown in Figure

3.4 along with the Nash Equilibrium Mixed Strategy (NEMS). Ineffective strategies

do not increase utility, leading to a best case outcome of the Nash Equilibrium. This

means there is no reason for the player to choose an ineffective strategy. Partially

effective strategies lead to greater expected utility at CΣ than at R0, while providing

a lower expected utility at C0. A partially effective RMS may provide a good outcome

based on row’s information, but a good outcome is not guaranteed. Fully effective

62



strategies lead to in the worst case the same expected utility R0 results in for C0,

but with greater utility than CΣ. If row’s beliefs about the game are correct, then a

RMS strategy that is fully effective is a reasonable strategy for row to play. These

relationships are summarized in Figure 3.5. While a fully effective strategy is a

reasonable strategy for row, it does not guarantee this is the best strategy in all

cases. The utility values are expected and not actual utility values. In order to

mitigate the risk when using expected utility values, the worst case scenario can be

used to select the strategy.

Figure 3.4: Effectiveness of Hyperstrategies in HNF [356].

Vane uses quantified outguessing in order to measure a players adversity to

risk. This measure quantifies the player’s fear of obtaining the worst outcome or

lowest utility from the game by being out maneuvered. There are three types of

hyperstrategies for analyzing quantified outguessing: Modeling Opponent (MO), Pick

Subgame (PS), and Weighted Subgame (WS). In MO, row’s strategy that provides

the greatest utility given all of row’s strategies and row’s belief of how column is
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Figure 3.5: Relationship of Hyperstrategy Effectiveness [356].

viewing the game. In PS, row’s strategy is the Nash Equilibrium given the same

game considered in MO. The WS strategy takes the PS strategy values and multiplies

by the belief context percentage for the given CMS then adds the R0 multiplied by

the belief context for each C0. This produces a hybrid strategy between PS and the

Nash Equilibrium Mixed Strategy of the full game. Each of the hyperstrategies are

then analyzed against the full game to obtain the worst case utility (G), which is the

expected utility value if column selects the best counter strategy. The Hypergame

Expected Utility (HEU) can be calculated using the Expected Utility (EU) and G,

along with the percentage, g, that represents row’s fears of being outguessed based

on the hyperstrategy (hs) as shown in the following equation:

HEU(hs) = EU(hs)− (EU(hs)−G(hs)) ∗ g

A hyperstrategy’s ability to provide a better utility at the Nash Equilibrium

Mixed Strategy decreases as row’s fear of being outguessed increases, as shown in

Figure 3.5. MO is the best solution when the fear of being outguessed is low. As
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the fear of being outguessed increases PS dominates until the Crossover Point. At

the Crossover Point the Nash Equilibrium Mixed Strategy of the full game becomes

dominant. WS does not provide a suitable choice as it is always dominated. It is

possible to select hyperstrategies with higher utility than standard game analysis,

with better information about the intents of the opponent.

Figure 3.6: The Effect of g on the Hypergame Expected Utility (HEU) [356].

In hypergame theory subgames represent a smaller game that differs in a key way

from the larger main hypergame. Often subgames differ by different combinations

of actions. Analyzing the subgames allows the player to see how the outcomes

change as the game model changes. This allows the modeling of false or misleading

understandings, incorrect or incomplete comprehension, lack of awareness, and faulty

interpretations of the game.

As shown in Figure 3.7, subgames can differ by the column player having a

different set of actions, which could lead to different outcomes/payoffs. A full game

is defined in Definition 7 and a subgame is defined in Definition 8.
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Figure 3.7: Hypergame Subgame Example.

Definition 7. Full Game Hypergame - When the row player has m actions and

the column player has n actions (called a m x n hypergame), it is called a full game

hypergame.

Definition 8. Subgame - Given a full game hypergame, a subgame is a game defined

with up to m rows and up to n columns (called a u x v subgame), where u ⊂ m and

v ⊂ n.

The equation to determine the possible number of subgames is Equation 3.1

[356]:

(
m

u

)
·
(
n

v

)
=
(

m!
u!(m− u)!

)
·
(

n!
v!(n− v)!

)
(3.1)
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While a large m x n hypergame game could result in hundreds of subgames,

limitations normally result in just a few subgames. Limitations include [356]:

• Time and effort

• The way human memory works

• Leaders distilling situation into a few courses of action

• Decision-makers condense plan selection problem into a handful of reasoning

contexts

Subgames are important when players interpret the payoffs in the environment.

The player’s interpretation can be wrong. For example, in Figure 3.7, Player 2 may

believe Player choose an action that leads to Subgame B, while reality is that Player

1 choose an action that lead to Subgame A. This means Player 2 continues playing

the game according to Subgame B.

Vane expanded hypergame analysis by exploring the robustness of strategy plans

[181]. This shows the ability of using hypergames for strategy selection. He also

applied HNF to a real world example of a terrorist attack [180]. The research aims

to pick the strategy to best protect first responders by applying the belief contexts

to the types of attackers expected during an attack. HNF is also applied to the Fall

of France in 1940 [32]. This application shows that information in the HNF model

is not removed even if a strategy is discounted with a chance of zero. The strategy

remains in the Nash Equilibrium Mixed Strategy and is not entirely removed from

the model, showing the flexibility and robustness of the HNF model.

3.2 Applications of Hypergame Theory

Hypergame theory has been used to examine past military conflicts, which

by their nature are conducted with missing information and misperceptions. Past
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conflicts lend to analysis because the excitement and fog of war has cleared

as well as the outcome has already been determined. Hypergame theory has

also been applied to sports, resource allocation, and business, where competitive

nature and proprietary information often lead to missing information and a desire

to introduce misperceptions. Recently, it has been applied to cyber conflicts

using attacker/defender models, where resource constraints and advantage are

important.This section provides an overview of each type of application.

The applications of hypergames are separated into five distinct categories as

shown in Figure 3.8: military conflict, sports, resource allocation, business, and

cyber. These categories contain the majority of the hypergame application work.

En overview of the numerous applications in hypergame theory is summarized in

Table 3.3. Each is listed chronologically and denoted with the corresponding year

and topic category.

Figure 3.8: Hypergame Application Characterization.
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3.2.1 Military Conflicts.

Bennett and Dando [39, 40] first applied hypergames to the first real world

application during their analysis of the Fall of France during WWII. They show how

misperceptions between the two countries can lead to unexpected outcomes using

hypergames. The hypergame model they used is shown in Appendix A and discussed

in detail.

Wright, et al. [328, 369] presented a more complex hypergame example in their

analysis of the Nationalization of the Suez Canal in the 1950s. This hypergame shows

how one player waiting to participate in the conflict can lead to strategies changing

over time. While this is a temporal concept, the analysis is only made for one point in

time during the conflict. The hypergame used for analysis is presented in Appendix

A.

Said and Hartley [308] use hypergame theory to analyze the 1973 Middle East

War. Their analysis shows that each player behaves in a rational manner within their

own perceptual beliefs. The deailts of the 1973 Middle East War are let out, as the

Fall of France and Nationalization of the Suez Canal are similar. The contribution of

this work is the proposed methodology for applying hypergame theory to a crisis:

• Specify all conflict participants (individuals, groups, or organizations)

• Divide the conflict in phases, but only initially proceed with the first phase

• Model each player’s perceptions of the conflict

– List all the strategies a player perceives all players (including himself)having

– Estimate the player’s preferences for outcomes

– Estimate the preferences of other players perceived by the current player

– Use the resulting game to explore alternative modes of behavior a player

may be expected to exhibit
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– Repeat process for each player, resulting a set of possible games based on

perception

• Map the strategies in the current player’s game into the set of possible games

in order to help correlate how each player perceives the actions of opponents.

Bennett and Dando [41] model an arms race between two nations as a hypergame.

Their analysis forces he modeler to consider the perceptions, beliefs, and actions of ll

parties involved, which they claim to lead to a more competent analysis. Appendix

A has additional details on the arms race model.

Fraser, et al. [107] apply five conflict analysis models to a possible nuclear

confrontation between the USA and USSR. The five conflict analysis models are

normal form analysis from game theory, metagame analysis [175], and hypergame

analysis [108] [106]. An overview of each of the models follows is in A. Their analysis

determines that the hypergame analysis of conflicts is the best for modeling real-world

conflicts.

Hipel, et al. [167] examine the Falkland/Malvinas conflict in 1982. The authors

approaches the conflict from a different angle in their analysis of the conflict between

Britain and Argentina. The hypergame analysis of the conflict is used to show how

misperceptions dictated an outcome that was unexpected by all sides. This analysis

uses three specific points in the conflict to construct three different hypergame models.

The authors construct the hypergame model based on historical material, using a

first-level hypergame, as discussed in A.

3.2.2 Sports.

In the literature there is only one example of hypergame being applied to sports.

While this is far fewer than military or business conflicts, it is easy to see how the

competitive nature of sports lends to hypergame modeling.
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Bennett et al. model soccer hooliganism [42] which appears in U.K. soccer

around the late 1970s. They use the hooligan fans and the authorities as the players.

Empirical studies were used to build up possible games that may be played between

the players. The hypergame analysis showed that there were three critical variables:

(1) the fans interpretation of how the authorities prepared for possible conflict; (2)

how the authorities interpret the “Play Hooligan” strategy by the fans; (3) the effect

previous incidents have on perception for future conflicts. The result of the analysis

is that tolerance should be used by the authorities. This reduces the over preparation

and expectation everyone is a hooligan, and in time reduces the effect of previous

incidents.

When the hypergame goes through a number of iterations, additional forces put

pressure on players in the game. For example, previous incidents will place pressure

on the authorities to be seen taking firm measures and may cause the authorities to

expect trouble. If this is the case, then authorities will start using tougher measures.

If the authorities expect malevolent fans, then there is the possibility that the fans will

become malevolent and start playing the role after being categorized. Over several

rounds, if each player is unhappy about the previous interaction, then they will start

to see the other player as increasingly malevolent.

3.2.3 Resource Allocation.

Hypergames are well suited to model resource allocation conflicts. The two

applications of hypergames in this area are to water resource managements between

multiple players. While hypergames often involve misperceptions, one example shows

how different degrees of power over another player can affect the outcome of the game.

Okada, et al. first applied hypergame analysis to water resource allocation in

Japan’s Lake Biwa conflict in the early 1970âĂŹs [266]. The conflict is a water

resource management problem, where the downstream users desire more water from
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the upstream water source, but the controllers of the water source are unresponsive.

While each player in the Lake Biwa conflict had misperceptions about the other

player’s preferences, the hypergame analysis was able to correctly identify the

compromise that resolved the conflict historically.

This hypegame has three players: the Shiga Prefecture, downstream prefectures,

and the national government. The authors use the notation from Howard [175] and

the metagame analysis in [107] to solve the hypergame. While this game is unique in

that is models three players, the details are of the analysis are similar to [107].

Hamandawana, et al. again applied a game theoretic analysis to a water

management conflict [156]. They use a method similar to hypergame analysis to

model the interstate conflict between Angola, Botswana, and Namibia over the shared

water resource of the Okavango River. The authors use a hypothetical game to build a

framework for developing sharing arrangements that minimize conflict, where players

make compensatory sacrifices to offset the losses of other players.

Their model introduces the idea of perceived comprised strategic relationships.

There are three types: fate control, reflexive control, and behavior control. In fate

control, the player’s outcome may be influenced by the actions of other players. With

reflexive control, the player has some degree of control over the outcome regardless of

the actions of other players. Behavior control is the case where the player’s outcome

is only feasible through interdependent actions of co-partners. This idea follows that

of Bennett with perceived games, and Fraser with enforceable/credible equilibriums.

3.2.4 Business.

Hypergames have been applied to business conflicts on many occasions. Business

conflicts allow modeling using hypergame naturally, given the misperceptions that

arise from company’s keeping secrets and leveraging for bargaining position.
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3.2.4.1 Applications to Shipping.

Hypergame theory was applied to a conflict in the oil shipping business in [137]

[136]. The incident in 1954 almost led to the bankruptcy of Aristotle Onassis, an oil

tanker fleet owner. The hypergame analysis showed that decisions made by a player

which appear to be irrational under a conventional game theory model, are actually

rational when the perceptual limitations and differences in information are considered

in hypergame theory.

Hypergame analysis was applied to an ongoing ship building conflict in [44]. The

authors were invited by staff of an U.K. shipping company. Ship building had taken

off in the 1970’s in the U.K., but due to developing countries building completing

fleets and the oil crisis in 1973. The hypergame analysis helped to show how different

countries supported the crisis in different ways. For example, Japan’s profitable

industries support the less profitable ones, which allow Japan to keep producing ships

when the ship market went into a depression. Other developing countries had labor

rates that were below those in the U.K. and support for the ship building industry

was lacking in the U.K.

3.2.4.2 Negotiation and Contracting.

Fraser and Hipel explore contract bargaining using hypergame theory [110]. They

build a model using the information available to the bargainer and look at the effects

of providing opponents with misinformation. They use the model to predict the

expected course of events during a negotiation session. The authors provide the first

implementation of hypergame analysis on a microprocessor called Conflict Analysis

Program (CAP) âĂŞ discussed later.

Fraser and Hipel [111] explore labor-management negotiations, where they apply

hypergame analysis to a hypothetical labor-management conflict. The hypothetical

conflict is developed in detail in [109]. The authors again use the CAP to show
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that the best model does not always conform to the way things should be, but

sometimes will conform to how things actually are. For example, they build their

model without considering union demands, fairness of salaries, benefits, or working

conditions. Instead they model the power of the individual players.

Bennett used a hypergame analysis to explore a conflict where multiple bidders

negotiate with a dispenser, who is able to accept the most generous offer [35]. This is

a case of two nations bidding to get a multinational corporation to relocate to their

jurisdiction. The model focuses on the ability of the dispenser to play bidders against

each other.

Graham, et al. [144] apply hypergame theory to study supply relationships

and modify control systems. They use hypergames to identify misperceptions in

the process that are causing inefficiency. These misperceptions are then identified

and targeted for correction to improve efficiency in the supply relationships of the

players. While the authors are studying twelve pairs of companies, they discuss the

types of games created to study the relationship between a vendor of forgings and an

engineering company.

3.2.4.3 Trade and E-Commerce.

Stokes and Hipel use hypergame theory to study an international trade dispute

over government subsidized export credits [343]. They model the awarding of large

contracts to supply subway cars in New York City, which involves the U.S. and

Canada, as well as the New York transit authority. Their analysis of the hypergame

highlights the role of strategic deception in awarding contracts and presents logically

reasonable resolutions.

Hypergame theory is applied to ecommerce by Leclerc and Chaibdraa in [217].

They use hypergame theory as an analysis tool for a multiagent environment. They

show how multiple agents interact through communication and a mediator when each
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has differing views of the conflict. A discussion is also provided on how agents can

take advantage of misperceptions.

Novani and Kijima [260] use a symbiotic hypergame model to examine the mutual

understanding process between customer expectation and provider capability. They

try to formalize the players’ internal model dealing with the way each player identifies

the situation subjectively and the interpretation function concerning how each player

interprets the set of strategies. This model is then applied to different types of

customers and providers that the authors develop.

3.2.5 Cyber.

There has been very little research with hypergame theory and its application to

cyber warfare, while there has been a variety of research using game theoretic models

to improve network security. These models use standard game theory methods,

instead of the hypergame theory methods. It is not impossible for hypergame theory

to be used where game theory has been applied. If the hypergame model contains valid

information, hypergame theory will do as well as the game theory models, with the

possibility of outperforming the game theory models [135]. It has also been suggested

hypergame agents can be used in place of agents based on decision theory and game

theory [179] although no application has been made to cyber warfare defense.

Cybenko [81] studied how different variants of game theory could be applied to

cyber adversarial applications. An overview from his work is shown in Table 3.4. He

found that hypergame theory provided a high applicability, realism, and robustness,

but had a medium level of maturity.

This section describes two research efforts to model cyber warfare scenarios.

These are believed to be the only two applications of hypergame theory to cyber

warfare and show how hypergame theory is still in its infancy.
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3.2.5.1 Information Warfare.

Kopp [198] uses hypergame theory to model Information Warfare. He uses a

hypergame to describe how the manipulation of an information channel is reflected

in the behavior of the adversaries. Figure 3.9 provides a graphical overview of the

general differences between a standard game model and a hypergame model based

on information flow. It also shows how hypergames improve upon the game theoretic

model by incorporating misperceptions of the players into the game model.

The author focuses on the Information Warfare techniques of denial of

information or degradation, deception and corruption, disruption and destruction,

and subversion. The hypergame provides a tool for understanding the nature of

Information Warfare and allows for quantifying the effects of the action during

warfare. The author determines the hypergame theory can be used to model

Information Warfare, because the strategies map directly into hypergame models.

3.2.5.2 Model with Obfuscation.

There has been at least a small amount of work performed in the use of hypergame

theory applied to cyber warfare. House and Cybenko have a model for generic cyber-

attack using hypergame theory [174]. In their model, the defender has the option

to choose a specific subgame or the full game, which represents the experience level

of the defending administrator. It is based on the HNF work by Vane, using static

utility values and placing the attacker as the row player. Learning models are used

to determine the belief context percentages representing the possibility that each

subgame is being played. The authors ran their simulations for multiple iterations

and where able to show the belief context percentages were within ±5% of the

true percentages. This research indicates a learning strategy may allow a player

to learn the strategy selection of the opponent, thus increasing the maximum utility

by obtaining a better understanding of the player’s opponent.
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Figure 3.9: Comparison of a game theoretic model and a hypergame model [198].

The authors then look at how the defender can obfuscate the learning ability of

the attacker. By using the obfuscation Nash Equilibrium Mixed Strategy, column is

able to interfere with row’s ability to learn the true percentages. Nash Equilibrium

Mixed Strategy is obtained by rearranging the initial utility values used during the

row learning experiments. This game setup is contrived in order to allow column

to select strategies that will lead to misinterpretation. However, the authors use
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this approach because payoffs and subgame definitions are the foundation of the

hypergame scenario.

The authors use of hypergame game theory to model a cyber-attack/defense

scenario is the most interesting part of this research. Instead of using the full HNF

model proposed by Vane, the authors focus on learning the game by repeated play.

This is a different approach than proposed originally by Vane [356]. More research

into cyber warfare modeling using hypergame theory is needed in order to refine the

models and theory.

3.2.5.3 Atacker-Defender Model.

Gibson [135] presents a hypergame model (based on HNF) of the work of Chen

and Lenectre [72]. At the heart, this model is an attacker-defender game. It keeps

the functional and nonzero-sum utilities from the Chen and Lenectre model.

With Gibson’s model, the attacker is given a new strategy, zero-day exploit,

which is an attack where there is no defense since the vulnerability is undiscovered.

The defender is given two new strategies: providing ruse or shutdown. A defender may

provide a ruse by following the attacker into attacking a honeypot, while collecting

information about the type and style of the attack. The shutdown option allows the

defender to remove the system from the network and stop the attack in its tracks

but also removes the system form operation even for mission critical activities. This

model is discussed in detail in Appendix B.

3.3 Related Work in Hypergame Theory

This section provides an overview of the related work in hypergame theory.

While each of these sections explores expanding hypergames in some way, each is

representative of the flexibility of hypergames to be used as models for real-world

conflicts.
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3.3.1 Hypergame Modeling.

Huxham and Bennett [178] introduce the idea of preliminary problem structuring.

In this phase the problem is explored, the relevant participants are identified, along

with the possible interactions. The authors try to build up a ’ structured picture’

in hypergame terms of the situation, instead of a hypergame model. The idea is to

explore how the various pieces fit together. The ’structured picture’ will often be too

complex to form into a formal hypergame model. It is therefore necessary to abstract

farther, making simplifications by asking specific questions [178]:

• How two different problem aspects relate?

• Where are the complexities of the system?

• Can simplifications be made while retaining the essential structure?

• Which participants are most important or influential?

In Hipel et al. [166] hypergame theory is applied to modeling misperceptions in

bargaining situations. The authors present a new game theoretical model and apply

it to a bargaining situation with two or more players (the new model is originally

introduced in [361]). They develop a new algorithm, called the HCCAS. The HCCAS

algorithm is shown in Figure 3.10.

The real-world situation is represented at the top of the algorithm and provides

critical information for the algorithm. The first step is to use the real world

information to define the structure of the bargaining situation. This stage involves

selecting a point in time at which the analysis will be conducted, as well as identifying

the participants, and potential interactions. The second step in HCCAS is modeling,

where the actions and outcomes of the players are identified. The third step of

HCCAS is the hypergame framework where the bargaining situation structure and
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Figure 3.10: HCCAS Algorithm as presented by Hipel et al. [166].

the levels of misperception for each player are identified. Following this step, the

preference vectors for each player are formed using information from the previous

steps; this is referred to the preference assessment in Figure 3.10. Stability analysis

of the hypergame is performed in the fifth step. After this, a strategy is selected and

can used to explain the real-world events. The HCCAS algorithm is then applied

to the Seymour landfill case, between Eau Claire city and the town of Seymour in

Wisconsin.

3.3.2 Stability Analysis.

Wang et al. explores stability analysis for n-players in [362]. The authors presents

a relationship of possible outcomes, as shown in the Venn Diagram in Figure 3.11.
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Nash stability is when players make a rational decision based on the best outcome for

the player, this type of outcome is considered rational (R). Nash stability is harder to

achieve when misperceptions exist between players. A General Metarational (GMR)

outcome is where other players have joint action for player i, and player i cannot

achieve a better outcome than the original. A Symmetric Metarational (SMR)

outcome is when there is one jointly sequential strategy selection that results in

player i achieving the same outcome. If a response to a player’s strategy results in

that player not achieving a better outcome and the responding player cannot possibly

achieve a worse outcome, it is known as a Sequential Stable (FHQ). The contribution

of this research is an FHQ outcome exists in all hypergame levels, which implies a

GMR outcome also exists in all hypergame levels.

Figure 3.11: Venn Diagram of Stability Analysis Outcomes for n-players [362].

Another view of stability analysis with mixed Strategies is introduced into

hypergames by Sasaki et al. [311]. This allows for generalization of Nash’s theorem

about noncooperative games [252] to hypergames [312]:
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Theorem 10. In every finite hypergame with mixed strategies, there is at least one

hyper Nash equilibrium.

Sasaki proposes the base game as an analysis tool for hypergames [310]. The

base game is the overlap of the perceived games between the players [310]. It

represents the game that would have been had there been no misperceptions among

the players. When a hypergame is compared to the base game, the misperceptions in

the hypergame can be analyzed.

Theorem 11. Let H = (Gp, Gq) be a hypergame with Gp = (N, Σ, up) and Gq = (N,

Σ, uq) where p, q ∈ N. A normal form game G = (N, Σ, u) is called the base game

of H iff up = upp and uq = uqq. Let the base game (BG) of hypergame H be denoted by

BGH .

A Hyper Nash provides an equilibrium solution for a simple hypergame, where

a stable hyper Nash equilibrium exists if all the hyper Nash equilibria that exist in a

hypergame are also Nash equilibrium in the base game. The hyper Nash equilibrium

[312] is used to describe a stationary state, where every player is not willing to change

their strategy or perception in the game. It is the solution to a hypergame that is

perceived as a Nash equilibrium by every player.

Theorem 12. Let H = (Gp, Gq) be a hypergame with Gp = (N, Σ, up) and Gq = (N,

Σ, uq). Then a∗ ∈ Σ is called a stable hyper Nash (SHN) equilibrium iff a∗ ∈ N(Gp)

and a∗ ∈ N(Gq) where N(G) represents the Nash equilibriums for game G.

This also means that if an outcome is a stable hyper Nash equilibrium, then in

the base game it is a Nash equilibrium. This implies that only outcomes that are

Nash equilibriums the base game are stationary states in the long run [310]. This

gives the following lemma:

Lemma 13. In a hypergame H, SHN(H) ⊂ N(BGH).
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Shown in Figure 3.12, the stability relationships are between the Hypergame (H),

Hyper Nash equilibrium (HN) of H (HN(H)),Base Game (BG), Stable hyper Nash

equilibrium (SHN) of H (SHN(H).

Figure 3.12: Stability Analysis Outcomes for Hyper Nash equilibrium [311].

3.3.3 Player Beliefs.

Vane and Lehner [352] deal with beliefs over games. The hypergame framework

allows a player to hedgs its risk about what the other opponents are doing. This is

donw by selecting a set of possible game that repreent the action the opponents may

take, and then a probability distribution is built over this set of games and evaluated

using the maximum expected utility. This allows the player to hedge its risk by using

the probably that an opponent will select an action, increasing payoffs by lowering

the effect of misperceptions on the hypergame model.

3.3.4 Perceptions and Deception.

Early work in hypergames have used matrices, trees, and tableaux to model

interactive decisions [37] [38]. The authors expand this repertoire by showing
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preliminary problem structuring, where there are games within games (subgames),

and build the concept of perception in hypergames. This provides the foundation for

using hypergames to solve complex decisions and additional graphical representations

of hypergames.

Mateski et al. explores perception, misperception, and deception in conflict using

hypergames [235]. They introduce a diagrammatic representation for hypergames

called the Hypergame Perception Model (HPM). The HPM is used to model

misperception and deception during the Cuban Missile Crisis where perception played

a critical role in the conflict. The HPM diagram is shown in Figure 3.13. The two

middle columns, denoted Awareness Notation, indicate if the player is aware at the

particular level of the hypergame. A check mark indicates correct awareness, and

‘XâĂŹ indicates incorrect awareness, and no mark indicates no awareness. Actions

available to the players are represented by white circles and strategies are represented

by darkened circles.

Figure 3.13: Hypergame Perception Model (HPM).

Gharesifard and Cortés [130] present the notion of inconsistent equilibrium in

the repeated play of first-level hypergames with two players. Inconsistent equilibrium
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refers to the equilibria of the hypergame where at least one player expects the other

to move away from. Just the existence of inconsistent equilibrium means there is

some misperception about the game among one of the players. A class of actions,

call exploratory, are also identified by the authors to allow players to move away from

inconsistent equilbiria and decrease the misperception. If only one player in the game

uses exploratory actions, then the hypergame will arrive at an outcome rational for

the player. If both players use exploratory actions, then the repeated play may finish

in a cycle.

They [132] also study the situations where the perceptions of players in the

game are inconsistent and evolving. The authors present a new method, called swap

learning, which allows the incorporation of information gained by observing their

opponents actions into the player’s beliefs. This method allows a player to decrease

misperceptions, but at a cost of incorporating inconsistencies into their beliefs. For

example, if player A originally believes player B’s preferences are 15 >3 >7 >11

(where each digit is an outcome), but the player B’s actions leads from outcome 15 to

11, then player A interchanges the positions of outcomes 15 and 11. Player A would

then believe player B’s preferences are 11 >3 >7 >15; this is called swap learning.

Since the swap of preferences does not take into account the other outcomes, then

inconsistencies can form in the beliefs of player A. To eliminate the inconsistencies, the

modified swap learning method is presented. This method assumes that the opponent

has perfect information and plays their best strategy, buts yields consistent beliefs

and decreases player misperception. The swap learning method place the origin of

the misperception on the player performing the belief update.

Again, Gharesifard and Cortes [131] [133] focus on conflicts with incomplete

information, where players may have different perceptions about the conflict.

Specifically they focus on a 2-player hypergame where one player, the deceiver, has
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full information about his opponent’s game and wants to introduce a certain belief

in it. They use their previously developed H-digraph [128], a special class of digraph

used to encode the belief structure of the hypergame players. Using the H-digraph

they are able to characterize deception when stealthy actions are possible in the game.

Their papers [128] [129] [132] also presents two algorithms for updating perception in

the hypergame. These methods can decrease the misperception between the player’s

perceived game and true payoffs.

3.3.5 Dynamic Payoff Functions.

Gibson presents a model based on the intrusion model presented by Chen and

Leneutre [135] and the Hypergame Normal Form model presented by Vane [355, 356].

Appendix B contains a detailed discussion. The author achieves a model that has

a changeable nonzero-sum utility values with a process for delineation of strategy

selection [72]. In order to achieve this model, the Chen and Leneutre intrusion model

is extended by adding strategies for both the attacker and defender, while the HNF

model is used to hide r discount strategies from the other player.

3.3.6 Mutual Interaction.

Inohara et al. discuss the ability of players to engage in multiple games

simultaneously [182]. Each game a player engages in may have interactions with

other games which can affect outcomes. The basic example they give, is a situation

in which a company competes in two different markets with two different opponents

(i.e. in market Y, Company A competes with Company B and in market Z, Company

A competes with Company C). A similar real life conflict would be a global company

deciding whether to invest in a specific country’s market knowing they will be face

completion from the country’s local established vendor. They integrate different

games in order to capture the interactions, which is realistic of real-life situations, and
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an example is given using the hypergame methodology, in order to model hypergames

that are mutually interactive and increase perception ability of players.

3.3.7 Fuzzy Logic.

Song et al. [338] [337] present a novel method that uses fuzzy logic to obtain

the outcome preference in first-level hypergame models. A fuzzy aggregate algorithm

is applied to get the group fuzzy perception of the opponents ’ outcome preference.

The preference sets are then obtained by solving linear programming models. The

authors obtain the crisp perception for the opponents’ outcome preference by using

a defuzzification function and the Newton-Cotes numerical integration formula. The

authors then use the concept of consensus winner to determine the preference vectors

in the hypergame models. In [339], artificial neural networks (ANNs) are trained to

learn the criteria for comparing fuzzy outcome preference numbers.

Yong et al. [291] use fuzzy pattern recognition to establish a nonlinear

programming model. This model is used to integrate different outcome preferences

for opponents perceived by different experts. Each expert perceives the outcome of

the game and this information is processed using fuzzy pattern recognition to obtain

a standard outcome.

Zeng et al. [371] develop an integration model for hypergames with fuzzy

preference perceptions. In conflicts, players cannot perceive information about the

opponent’s game clearly, so an integration model of multiple perceived fuzzy games,

using hypergames is developed. Each player has fuzzy preference perceptions. The

authors use linguistic values for the outcome preferences over the outcome space,

which are represented as triangular fuzzy numbers. Hypergames with fuzzy preference

perceptions are demonstrated with a military example about two country’s Navys.
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3.3.8 Bayesian Games.

Yasuo Sasaki and Kyoichi Kijima compare Bayesian games with Hypergame

games [313]. A detailed analysis of their work appears in Appendix D. The discussion

includes what was accomplished in their research, how the claim that Hypergames

can be reformulated in terms of Bayesian games is stronger than the method they

actually propose, and covers the uniquness of hypergame as proposed by P.G. Bennett

[34] and later refined by Russell Vane [356].

3.3.9 Multi-agent Environments.

Chaib-draa [68] use hypergames to analyze differences in perceptions in multi-

agent environments. They show how multi-agents can interact using a third party,

while having different views and perceptions of the game. The third party is used to

observe the exact perceptions of the players from an external context. The players

can then choose to trust the external observation and update their perceptions of

the game (with assurance from the third party of correct perception). If one of the

players deviates from the agreed upon outcome, the third party informs the other

player. Overall, the third party is used to enforce perceptions between players or to

create misperceptions between players. For example, the third party could be used

to have nested perceptions in different hypergame levels.

3.3.10 Combining Approaches.

Huxham and Bennett [177] explore combining hypergames with cognitive

mapping, since both deal with the subjective world of decision-makers. They started

with the idea that maps could be built up, then the players, preferences, and outcomes

could be extracted. The authors determined this process was not straightforward.

They then structure the problem in hypergame form then used piecemeal maps

to explore certain outcomes. The relationship between hypergames and cognitive

mapping is explored theoretically by Bryant [59].
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Bennett and Cropper [33] examine combining hypergames with Strategic Choice

to provide an effective method for modeling decision problems. Strategic Choice

deals with uncertainty [113], where a participant moves between the activities of:

problem-shaping, generating alternatives, comparing solutions, and finally choosing

how to act. While hypergames and Strategic Choice often deal with uncertainty,

both offer different perspectives. In Strategic Choice, the emphasis is on the need to

coordination between parties, where in hypergames the emphasis is on communication

as a means to makes threats, bluffs, or deception [33].

Putro et al. [290] [289] [288] combine hypergames with genetic algorithms to

produce adaptive learning procedures. The genetic algorithm is used to choose

nature’s strategies in order to improve perceptions. They present three learning

methods where each method varies a part of the genetic algorithm (such as fitness

evaluation, modified crossover, action choice). The authors present two experiments

that analyze the effect of uncertainty and crossover rates on the outcome of the

learning procedures.

Kanazawa et al. [191] [190] [192] study hypergames and evolutionary game

theory. They use hypergames to add perceptions to evolutionary game theory,

which result in evolutionary hypergames. Interpretation functions, which specifies

the relationship between the player’s strategies and those of their opponent(s),

from hypergames are introduced into evolutionary games. These interpretation

functions are then used to create the replicator dynamics for the evolutionary game,

which describe the selection process for the distribution of the strategies in a given

population. This process is demonstrated using the original application by Bennett

to Soccer Hooliganism [190].
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3.3.11 LG Hypergames.

While not directly related to hypergame theory as envisioned by P.G. Bennett,

LG Hypergames have a similar goal: to “account for drastic mutual influence of

multiple subgames” and are applied to abstract board games (ASB) [341] Linguistic

Geometry (LG) hypergame was first demonstrated in [341], where it was used to

infer the direct and indirect effects. Each ASB is dynamically linked together by

interlinking maps, a concept similar to hyperlinks in an HTML document [342]. A

detailed application of LG hypergames is given in [363].

3.3.12 Conway Games and Hypergames.

Honsell and Lenisa study Conway games, forming a “hypergame” from basic

Conway games [173]. A Conway game is a combinatorial game with 2-players, no

chance, a set of positions for both players, and perfect information [78]. These games

represent board games such as Nim or Go. Games where both players have the same

set of moves (Nim) are called impartial and games where players have different sets

of moves (i.e. Go) are called partizan [173]. In this case the term hypergame refers

to a non-wellfounded game or a game that do not terminate. The term is not used

in the same way as this research.

3.4 Hypergame Analysis Software

Hypergame analysis is possible by hand but not recommended; it is a tedious

process which is better accomplished by software using the computational power

of modern computers. Hypergame analysis requires calculation of utility from

mathematical functions, multiple runs of game models with different strategy selection

such as static or random, as well as update model variables and player belief contexts

between each game iteration. The ability of software to fit these requirements are

discuss as different tools are explored for hypergame analysis.
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3.4.1 Statistical Software Packages.

Microsoft Excel, MiniTab, and other statistical software packages are able to

model hypergames and can easily calculate utility functions from mathematical

equations as shown at the IEEE/WINFORMS Joint Program for Capital Science

[267]. The main disadvantage is these programs have the inability to run multiple

game iterations and update variables between iterations. Mathematical software, such

as Matlab or Mathematica, can calculate the utility functions from mathematical

equations and run multiple game iterations and update variables as well as player

beliefs between iterations, but this software is not specialized for hypergame analysis.

This means for each game model the entire model has to be built from scratch; there

is no standardization of hypergames between researchers.

3.4.2 Gambit.

Gambit is software designed for analyzing finite, non-cooperative games using

the strategic form [239]. Players and strategies can be added using the Gambit

interface to quickly create a game for analysis. It has the ability to exchange game

model to external tools, creating a standard for game theory model data. The main

disadvantage of this software is lack of support for the complex hypergame model;

there is no way in the Gambit interface to enter different games based on each player’s

perceptions or to use mathematical equations to calculate utility values during game

analysis.

3.4.3 HYPANT.

A software tool specifically designed for hypergame analysis, called HYPANT,

was written by Lachlan Brumley [58]. It uses a standard notation, referred to as

a language, to represent hypergame models called Hypergame Markup Language

(HML). The HML allows the hypergame model data to be saved, restored, and

transported, as well as supported subgames based on the player’s perceptions. The
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disadvantages to HYPANT are the lack of support for functional utility values, it only

supports the stability and unilateral improvement values used by Frasier and Hipel

in their analysis of the Cuban Missile Crisis [106].

3.4.4 SPA.

Another hypergame analysis program based on Vane’s HNF theory is called

Security Policy Assistant (SPA). SPA was created to assist in deciding if classified

documents are released or withheld from foreign disclosure [183]. While the software

manual was available, the software is not given its sensitive nature in decision making

with classified information. This software supports the application of hypergame

theory beyond the previous applications of military, sports, and business conflicts,

given this software’s ability to assist in decision making about classified documents.

3.4.5 HAT.

The lack of suitable software meeting all the requirements for hypergame analysis

caused Alan Gibson to create the HNF Analysis Tool (HAT) software [135]. HAT

is written in Java and supports using the Extensible Markup Language (XML) to

input and save game design. XML is an improvement over the HML language used

by HYPANT because XML is widely supported, has many tools to create, read, and

verify, as well it is not proprietary like HML.

Once a game in XML is loaded, HAT allows multiple game iterations to be run,

supporting static or random strategy selection. It also allows variables and belief

contexts to be updated between hypergame iterations. Given the availability of the

HAT software and its ability to handle hypergames using HNF concepts developed

by Vane [356], this software is used and updated throughout this research effort. The

HAT software is shown in Figure 3.14 with a game loaded.
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Figure 3.14: HNF Analysis Tool (HAT) Software.

3.4.5.1 Nash Equilibriums.

The HAT software uses the Lemke-Howson algorithm to calculate Nash

equilibriums which is appropriate for non-zero sum bimatrix games [218]. This

algorithm is not guaranteed to find all Nash equilibriums but will find at least one

as proven by Nash’s Existence Theorem [252]. This Nash Equilibrium is then used

as the initial belief context. Additional belief contexts are used for the creation of

hyperstrategies.

3.4.5.2 Belief Contexts.

Belief contexts consist of row’s belief that column will choose the specific context

and the percentages of each strategy column can choose from. Each belief context

forms a subgame where column strategies with a percentage use of zero are removed.

Subgames are determined using the supplied belief contexts in the XML game file

and by removing all strategies labeled as hidden. This allows hyperstrategies to be

created by examining the subgames from the hypergame analysis.
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The HAT software generates the hyperstrategies as the Modeling Opponent

(MO), Pick Subgame (PS), and Weighted Subgame (WS). These subgames are not

actually hyperstratgies, but are included by the software for a complete model.

3.4.5.3 Utility.

The Expected Utility (EU), worst case utility (G), and Hypergame Expected

Utility(HEU) are calculated for each hyperstrategy. The EU is calculated by

multiplication of utility values with row’s strategy selection percentage, as well as

the aggregate of column strategy selection in CΣ. The final EU value is calculated

by adding each strategy utility together. The G value is calculated using the worst

case outcome, where the lowest utility available to row’s strategies is multiplied by

the strategy’s percentage use. The HEU is calculated as follows:

HEU(hs) = EU(hs)− (EU(hs)−G(hs)) ∗ g

The fear-of-being-outguessed, g, is used to calculate the HEU of each

hyperstrategy. The HAT software allows the g value to be fixed (predetermined) or

changed between executions so each game can have differing HEU values. Different

HEU values can lead to different hyperstrategy choices.

3.4.5.4 Game Execution.

Each hypergame can be executed, which consists of selecting player strategies

and calculation of utility values. The strategies for the column player are selected by

a usage value or usage file. Usage values are in the XML game file as percentages

assigned to each column strategy. The percentages are then used to choose a column

strategy stochastically. If a usage file is used, then the file contains a list of strategy

names and the strategies are chosen in order. The strategy for the row player

is determined by selection of a hyperstrategy. The strategy is selected from the

hyperstrategy with the highest HEU value and a random number. Based on the

strategy selected by row and column results in the utility each player receives in the
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game outcome. The results of the execute game can be exported to a file in comma

separated value (CSV) format for manipulation by external software.

3.4.5.5 Update Modes.

The HAT software supports for update modes for game execution. The variables,

g value, and belief context can be updated. The fourth mode is where all are updated.

Variables are updated using a supplied algorithm which can be affected by strategy

choices. This allows costs for certain actions to change over time. The update

algorithms are contained in the XML file variable node. The g value is updated by

determining if the player was able to obtain the expected utility for that particular

game iteration. If the expected utility is reached then the g value decreases, otherwise

it increases. The values to increase or decrease by are settable within the XML file.

The initial belief context are based on utility values, which are affected by the variable

changes. If the game changes, then it is expected the player’s belief about how the

game is being played will change. The belief context will be updated whenever the

utility values are changed in the software.

3.5 Summary

This chapter describes the foundational model for hypergames, as well as provides

applications of hypergames that indicate its ability to model complex conflicts with

imperfect information. The foundation provided in this chapter is built upon in the

following chapters as hypergame theory is extended with temporal logic. The next

chapter provides an overview of temporal logic, which is used in this research to

extend the hypergame model.
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Table 3.3: Listing of Hypergame Applications, Chronological.

1st Author and Citation Year Category

Giesen [136] 1978 Business

Bennett [39, 40] 1979 Military conflicts

Giesen [137] 1979 Business

Wright [369], Shupe [328] 1980 Military conflicts

Bennett [42] 1980 Sports

Fraser [109, 110] 1980 Business

Bennett [35] 1980 Business

Bennett [44] 1981 Business

Fraser [111] 1981 Business

Said [308] 1982 Military conflicts

Bennett [41] 1982 Military conflicts

Fraser [105, 107] 1983 Military conflicts

Stokes [343] 1983 Military conflicts

Okada [266] 1985 Resource allocation

Hipel [167] 1988 Military conflicts

Graham [144] 1992 Business

Vane [355] 1999 Cyber

Vane [356] 2000 Cyber

Leclerc [217] 2002 Business

Kopp [198] 2002 Cyber

Hamandawana [156] 2007 Resource allocation

Novani [260] 2010 Business

House [174] 2010 Cyber

Gibson [135] 2013 Cyber
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Table 3.4: Variants of Game Theory and applicability to Cyber Adversarial

Applications

Maturity Applicability, Robustness Preliminary

Realism Results

Games with Complete high low low low

Information

Games with Incomplete high high medium medium

or Imperfect State

Information

Games with Incomplete high medium medium low

or Imperfect Objective

Information

Adaptation, Evolution, medium high medium medium

Learning in Games

Hypergame Theory medium high high high

Behaviorial Models medium high medium medium
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IV. Temporal Preliminaries

This chapter presents the background and related work for temporal logic, logical

reasoning, and belief revision. First, background information on the foundation of

temporal logic is given. Then logical reasoning, such as deductive, inductive, and

abductive reasoning is discussed. Finally, a brief overview of belief revision is given

with application to game theory.

4.1 Temporal Logic

Until now, past research using hypergame theory has not considered time as an

integral part of the hypergame model, this research uses temporal logic to represent

the changes to the hypergame model as player perceptions change over time. The

only known research to use iterations with hypergame theory was in the analysis of

the Falkland/Malvinas conflict [167]. Here the authors picked three distinct points

in time and created three individual hypergames to model the conflict.

Temporal logic provides a method and notation to impose constraints on a time

based model. By using temporal logic to constrain the hypergame model, time is

able to be incorporated leading to more accurate modeling of real life conflicts. Real

life does not happen in distinct iterations, instead events play out over time with

information and beliefs being updated overtime.

4.1.1 Temporal Logic History.

Modal logic is based on the notion of necessity and possibility. Introductory

writing on modal logic can be found in Hughes and Cresswell [176] and Chellas [71].

It was developed by philosophers to understand the different modes of truth. It

flourished during Medieval times when it was used for theological argumentation
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[229]. Widely accepted semantics for modal and temporal logic were developed by

Kripke [206].

On one hand, temporal logic is believed to have evolved from modal logic, through

the process of interpreting the modal operators in the context of time-dependency.

Alternatively, the logic can be specialized with time modalities. Rescher and Urquhart

[300] and Goldblatt [139] study this view in detail.

Logical analysis of natural languages provide additional motivation for the study

of temporal logic This view evolves temporal logic form the formalization of linguistic

conventions where tenses are modeled using formal calculus. The seminal paper on

this view was published by McTaggart [240]. Prior further applies this approach in

[287], along with Kamp [189], Gabbay [117], and van Benthem [45].

Pnueli [283], Goldblatt [139], and Emerson [94] provide general surveys on

temporal logic uses in Computer Science, while Fisher et al. [102] presents a survey

on temporal reasoning in Artificial Intelligence.

4.1.2 Types.

Temporal Logic Temporal Logic (TL) for reasoning about concurrent programs

can be divided into different types: propositional versus first-order, global versus

compositional, branching versus linear, points versus intervals, and past versus future

tense. The various types are discussed in more detail below.

4.1.2.1 Propositional versus First-order.

Propositional TL is based on non-temporal classical propositional logic. The

proposition is built by a formula of atomic propositions, which are used to express

atomic facts about the concurrent system state, truth-functional connectives, such

as ∧, ∨, ¬ (and, or, and not), as well as temporal operators. Wolper [367]

presented an extension to propositional temporal logic with right-linear grammar

operators, showing the resulting system leads to greater expressive power. Banieqbal
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and Barringer [24] show Wolper’s proof is complete with some modifications. An

alternative is propose by Wolper et al. [367] where finite automata are used on

infinite words.

Atomic propositions are refined into expressions, created from variables,

constants, functions, predicates, and quantifiers. These expressions are referred to

as First-order TL. There are many sub types of First-order TL: uninterpreted,

interpreted, fully interpreted, and partially interpreted. In uninterpreted First-order

TL, no assumptions are considered about the special properties of the structures,

while interpreted TL makes assumptions about a specific structure. In fully

interpreted First-order TL, each variable has a specific domain and each function

symbol has a concrete function over the domain. On the other hand, when a specific

domain is assumed but the function symbols are uninterpreted, this is called partially

interpreted First-order TL. TL as distinguished between local and global variables.

Local variables are assigned values in different states, where the value can differ

between states. Global variables are assigned a single value, which holds over all

states of the system.

Syntactic restrictions can be imposed on the interaction of temporal operators

and quantifiers. In unrestricted syntax, temporal operators appear in the scope of

the quantifiers and are normally undecidable. Restricted First-order TL does not

allow temporal operators to appear in the scope of the quantifiers. This results in a

propositional TL and a first-order language for stating atomic propositions.

4.1.2.2 Global versus Compositional.

Endogenous TL interprets all temporal operators corresponding to a single

concurrent program, in a single universe. Exogenous TL allows the temporal operators

to express the correctness properties related to program fragments or different

programs within the same formula. This allows compositional reasoning, where
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the whole program is verified by specifying and verifying each of the subprograms,

then combining each subprogram to obtain the proof of correctness for the complete

program. In this case, each sub game proof is used as a lemma.

4.1.2.3 Branching versus Linear Time.

Two possible views of the nature of time exist when defining a temporal logic

system. If at any given moment there is only one possible future moment, time is

linear. If at any given moment there are alternate courses leading to different possible

future moments, time is branching. Linear time logic is used to describe events over a

single time line, while branching time logic allows quantification over possible futures.

These views have been used to reason about programs in [213] [96] [282].

4.1.2.4 Points versus Intervals.

Most program reasoning use temporal operators that evaluate to true or false

at a certain point in time. Temporal operators can also be evaluated over intervals

of time. Intervals of time have been used by [317] [247] [155], and are claimed to

simplify the creation of specific correctness properties.

4.1.2.5 Discrete versus Continuous.

Time is discrete if the present moment corresponds to a program’s current state

and the next future moment corresponds to the program’s next successor state. Time

progresses in discrete units using nonnegative integer values. Discrete time has been

applied to real-time system in Koymans et al. [203], Ostroff [271], Alur and Henzinger

[17] [18], Harel et al. [158], and Henzinger et al [163]. Time is continuous if the

current state of the program and the successor state are continuous, for example over

the reals or rationals instead of only at distinct values. Burgess [60] offer a proof for

temporal logic over continuous time domain, and Burgess and Gurevich [61] analyze

the decidability of the satisfiability problem. Barringer et al. [29], Koymans and de
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Roever [202], and Alur et al. [16] apply continuous-time temporal logic to real-time

systems.

4.1.2.6 Past versus Future.

Classical temporal logic defined by Kamp [189] includes both past and future

operators. The future tense operators are used to describe what may happen to

future system states, while past operators allow the system to take into account what

happen in the past. Past tense operators are similar to history variables and allow

for compositional specification. Gabbay et al. [121] claim the expressive power is

not reduced by restricting the logic to only future operators. On the other hand,

Lichtenstein et al. [222] and Pnueli [283] show that the past operators lead to more

uniform classification of program properties.

4.1.3 Common Language.

4.1.3.1 Model.

The general model for point-based temporal logic is (S, R, π), where S is the set

of time points, π maps each point to true propositions at the given point in time, and

R is an earlier-later relation between the points in S [103]. In discrete temporal logic,

the accessibility relation, R, can be replaced by a relation between adjacent points, N.

This forms the next-time relation, which is applied over the set of all discrete moments

in S. Therefore, for all s1 and s2 in S, N(s1, s2) is true if s2 is the nextdiscrete time

moment after s1.

For non-discrete models, such as the reals, R, there is no clear idea of the next

point in time. If a temporal relation, R, is based on R then if the two time points

are related, there is always another time point between the points, since R is dense

[103]:

∀i ∈ S,∀k ∈ S.R(i, k)⇒ [∃j ∈ S,R(i, j) ∧R(j, k)]
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The next point in time does not make sense in this context, so logic based on

dense models use operators relating to intervals. These require interval-like operators,

which refer to a particular subsequence of points.

4.1.3.2 Representation.

In temporal logic, temporal operators are used to reason about how truth values

vary with time. Two temporal operators are sometimes P which is true now if in the

future there is a time moment at which P becomes true and always Q which is true

now if Q is always true at all future time moments.

�ϕ - ϕ is always true in the future

^ϕ - ϕ is true at some time in the future

There exists temporal aspects that cannot be represented using � and ^ [189]

[51] [367]. Kamp [189] and Burgess [60] introduced the until operator, : U , and the

unless operator, W , from tense logic:

ϕUψ - there exists a moment when ψ is true and ϕ will continuously be true

from now until this moment

ϕWψ - ϕ will continuously be true from now on unless ψ occurs, at which time

ϕ will cease

The unless operator is often referred to as a weak until, because of the connective

similarities. In most situations this is fine, since sometime and always can be defined

using the until operator. The next time operator, O, is added as a convenience in

discrete models of time.

Oϕ - ϕ is true at the next moment in time

Using the next-time relation, in the discrete case, example semantics can be given

over model M = ‹S, N, π›:
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‹M, s›|= Oϕ iff, ∀ t ∈ S, if N(s,t) then ‹M,t›|= ϕ

In some cases it is possible to define the Ooperator directly using the U operator

[95].

Past-time connectives, such as since, were originally incorporated in tense logics

[189] [60]. These connectives were originally not used by temporal logics in Computer

Science, but have been added for convenience [28] [222]. If both past and future

operators are required in a temporal model, are a matter of discussion [216]. Therefore

there are past-time counterparts of �, ^, etc., such as the previous operator, l, the

past-time dual of the next operator.

l ϕ - ϕ is true at the previous moment in time

A more general definition, dependent only on the discreteness of the model, shows

the interaction between the two operators. The next-time relation is used and l is

defined over model M = ‹S, N, π›:

‹M, s›|= Oϕ iff, ∀ t ∈ S, if N(s,t) then ‹M,t›|= ϕ

‹M, t›|= lϕ iff, ∀ s ∈ S, if N(s,t) then ‹M,s›|= ϕ

The duality between l and Ois seen with lfalse (or Ofalse). lfalse can only

be satisfied in a temporal model at the first or last moments. Using the previous

definition the only way lfalse is satisfied is if there are no previous moments in time.

For example, given the axiom:

ϕ ↔ lOϕ

The state, s, is either disallowed by the axiom, or if the state is allowed then

it cannot be distinguished from the current state in any temporal formula. The
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interactions of the until and since or the sometime future and sometime past are

explored in [123] [349] [303].

For example, in Computer Science and Artificial intelligence, first-order logic

statements are used in temporal modeling. This treats one of the arguments to each

of the predicates as a time parameter and is called the temporal arguments approach.

Given that each statement is to be evaluated at the moment in time i, the following

formulas can be represented in classical logic [103]:

p ∧ Oq −→ p(i) ∧ q(i+1)

� r −→ ∃ j, j ≥ i ∧ r(j)

� s −→ ∀ k, k ≥ i → s(k)

The until and since, as well as sometime in the future and sometime in the past

are useful for linear models, not only discrete models [189]. These operators describe

temporal properties in dense, non-discrete models. Until and since have been used

to change arbitrary formulas into normal form, this allows past-time to be separated

from future-time [27] [101] [118] [170]. While sometime in the future, F, and sometime

in the past, P, have been used in non-discrete logics based on R [122] [123] [119].

In [29] and [194] until is the basic temporal operator and the temporal model

is based on R. This allows only the future moments in time to be considered.

The authors had trouble with the model over R, so they introduced the additional

constraint of finite variability. In finite variability, a property’s value is allowed to

only change a finite number of times, between two points in time. This prohibits the

property from varying between true and false infinitely over a fixed, finite period of

time. Finite variability is also used in [83] [126].

105



4.1.3.3 Interval Temporal Representations.

Two different approaches exist for interval temporal representations. Allen

developed interval algebra for Artificial Intelligence, while Moszkowski et al.

developed interval temporal logic for Computer Science. Thses two approaches are

discussed below.

Allen Interval Algebra is referred to as the reification approach. In this approach,

predicates like holds and occurs are applied to properties and moments in time and

each property will either hold or occur. Allen used binary relations for intervals to

describe the relationships of intervals [12] [13]. For example, for interval Ik where k

is an specific time period:

IA overlaps IB is true if the intervals IA and IB overlap

IA during IB is true if the interval IA is contained completely in the interval IB

IA before IB is true if the interval IA occurs before IB

Allen Interval Algebra was further formalized and analyzed in [224], [223], [212],

[211], [154], [14]. The algebraic properties are explored in [169] [168]. Allen’s initial

binary relations have been extended in [147] and associated with computational

problems in [89]. There are also other publications on reified approaches, such as

McDermoott’s logic of plans [238], Situation Calculus [298] [225], and the Event

Calculus [201]. Detailed surveys on reified approaches can be found in [227], [125],

[25], and [296].

Moszkowski et al. [153] [245] developed interval logic that was directly related to

the discrete propositional temporal logic [120]. Moszkowski et al. originally developed

their logic to model digital circuits and called it ITL.Formulas in ITL are interpreted

in sub-sequences (σb, . . ., σe) instead of at a specific point in the model σ. This means

the propositions are only evaluated at the start of the interval. Given proposition P:
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‹σb, . . ., σe ›|= P iff, P ∈ σb

With this definition, the definitions of sometimes and next time are as follows:

‹σb, . . ., σe ›|= � ϕ iff, ∀ i, if b ≤ i ≤ e then ‹σb, . . ., σe ›|= ϕ

‹σb, . . ., σe ›|= Oϕ iff, e >b and ‹σb, . . ., σe ›|= ϕ

ITL uses the chop operator, ;, to fuse time intervals together [305] [359] with the

basic temporal operators:

‹σb, . . ., σe ›|= ϕ; ψ iff, ∃ i such that b ≤ i ≤ e where both ‹σb, . . ., σe ›|= ϕ

and ‹σb, . . ., σe ›|= ψ

The chop operator is problematic because it guarantees a high complexity logic

[103]. It is highly useful because it allows the splitting of intervals on their properties.

For example, if there is a sub-interval where true is satisfied which is immediately

followed by a sub-interval where ϕ is satisfied:

� ϕ ≡ true; ϕ

Further examples of formulas in ITL are given with explanations [103]:

• p persists through the current interval

� p

• Definition of steps within an interval

up ∧ Odown ∧ OOup ∧ OOOdown

• Sequences of intervals can be constructed

� January; O�February; O�March; . . . .
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• p has a period of being false which is followed by a period where it is true

�¬p;O�p

Granularity in ITL has been explored with the temporal projection operator [57],

[149], [150], and [246]. Halpern and Shoham have proposed HS logic over intervals

[154]. This logic captures Allen’s algebra with unary modal operators and uses binary

operators to capture the chop operator from ITL [141].

There are several extensions to the interval approaches already discussed. In

[124] and [75] intervals over arbitrary relations are considered, this allows spatial

and spatio-temporal logics. Spatial logic is any formal language interpreted over

geometical entities and relations [5], while spatio-temporal logic is a combination of

spatial logic and temporal logic. Duration calculi [373] [70] on been used to introduce

real-time concepts into interval temporal logics. An extension to interval temporal

logic that allows endpoints to be moved called compass logic is explored in [233].

4.1.3.4 Quantification.

Propositional temporal logic has been extended to allow quantification over

propositions. This allows first-order quantifier symbols, ∀ and ∃ to be used with

boolean valued variables. This is referred to logic Quantified Propositional Temporal

Logic (QPTL). For example, the following formula is allowed:

∃ p, p ∧ � � ¬p ∧ OOp

This form of quantification is called substitution interpretation [152] and is

defined as:

‹M, s ›|= ∃ p. ϕ iff, there exists a model M ′ such that ‹M, s ›|= ϕ and M ′

differs from M at most by the valuation given to p
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Substitution interpretation is used in QPTL and in other extensions to

PTL. Haack [152] presents a discussion on the differences between substitution

interpretation and the more common objectual interpretation of quantification:

‹M, s ›|= ∃ p. ϕ iff, there exists a proposition q ∈ PROPERTIES such that ‹M,

s ›|= ϕ (p/q)

where ϕ (p/q) is the formula ϕ with p replaced by q throught the formula

QPTL allows regular properties to be defined, and was inspired by Wolper’s work

[367] right-linear grammar operators for PTL, called ETL. These right-linear grammar

operators are restricted fixpoint operators [229]. Wolper [52] also introduced the

notion of fixpoints, extending PTL with least, µ, and greatest, , as fixpoint operators.

This allowed expression of more complex expressions:

� ϕ ≡ . ϕ ∧ Oξ

Where � ϕ is the maximal fixpoint, ξ, of the formula ξ → (ϕ ∧ Oξ). Therefore,

the maximal fixpoint results in � ϕ as the infinite formula:

ϕ ∧ Oϕ ∧ OOϕ ∧ OOOϕ ∧ OOOOϕ ∧ . . .

Related work has shown the extensions QPTL, ETL, and fixpoint are expressively

equivalent under specific circumstances [24] [332] [357] [367].

Adding objectual quantification to temporal logic allows the formula to capture

arithmetical induction, which is the basis for representing full arithmetic [2] [346]

[347]. This results in first-order temporal logic being incomplete and the formula is

not finitely axiomatisable over models such as the Natural Numbers. Hodkinson et

al. [171] presented work on monodic fragments of first-order temporal logic. They

showed that monodic fragments have complete axiomatisations and are decidable.
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A formula is monodic if the temporal subformulas have only one free variable. For

example:

Monodic Formula: ∀ x, p(x) → Oq(x)

Not Monodic: ∀ x, ∀ y, p(x,y) → Oq(x, y)

4.1.4 Summary.

Temporal logic provides a method and notation to place constraints on

hypergame models by expressing properties of dynamic systems. It does this by

allowing requirements to be stated for the model. Often these requirements have a

truth value associated with it, that may vary over time. The truth values can be used

to verify the model and ensure the model does not violate the stated constraints over

time.

It is well understand that real world conflicts are dynamic systems; the conflict

is constantly changing and developing over time. This requires a standard method

to express the properties of complex conflicts. Temporal logic provides the necessary

structure and notation to express the properties of complex conflicts and can be used

with hypergame models.

4.2 Reasoning

”Reasoning is the process of using existing knowledge to draw conclusions, make

predictions, or construct explanations.” [93] During a conflict is necessary for players

to reasoning about the information they have and their beliefs. In a hypergame

model the row player is reasoning not only about the strategy to use, but also what

strategy the column player may select. In a hypergame model that is repeated over

time, reasoning also helps players update their information and beliefs based on what

it appears the opponent did previously. There are three methods of reasoning that

may be used in hypergame analysis: deductive reasoning where the conclusion is
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guaranteed, inductive reasoning where the conclusion is only likely, and abductive

reasoning where the conclusion is a best guess.

4.2.1 Deductive Reasoning.

Deductive reasoning starts with a general statement or statements, then reasons

to reach a guaranteed logical conclusion. In deductive reasoning general statements

are called premises. If the premises are true then the conclusion is also true. For

example mathematics is a deductive system:

if x = 2, 0

and if y = 5

then 3x + 2y = 16

Deductive reasoning can also be expressed in ordinary language, which is called

a syllogism (such as an If, Then, Else statement from first order logic):

If entropy in a system increases unless energy is expended

And if my bedroom is a system

Then disorder increases in my bedroom until I clean it.

In the syllogism above, the first two statements are premises, and together lead to

the third statement, which is the logical conclusion. The conclusion is either sound,

true, or unsound, false, which depends on the truth of the original premises. The

deductive inference can be either valid or invalid, without regard to the truth or

falsity of the original premises. The deductive inference may be valid even when the

original premise(s) were false. This means the syllogism results in a false conclusion

because one or more premise(s) where false, but the syllogism is still valid since it is

logical - the conclusion logically follows from the stated premises.
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If premises are sound, then deductive reasoning leads to specific logical

conclusions. Deductive reasoning is nonampliative, therefore it cannot increase human

knowledge. Conclusions are reached by reducing the premises to tautologies, this

allows observations to be made and implications to be expanded, but deductive

reasoning cannot be used to predict future or non-observed events.

4.2.2 Inductive Reasoning.

Inductive Reasoning starts with specific observations with limited scope, then

reasons to reach a generalized conclusion which is likely, but not guaranteed or certain,

based on the observations. Most scientific research uses inductive reasoning where

evidence is gathered, patterns are identified and a hypothesis or theory is formed to

explain the observations [76].

Conclusions based on inductive reasoning are not logical necessities. The

evidence does not guarantee the conclusion, since there is no way to know all

the possible evidence has been collected and any new evidence may invalidate the

hypothesis or theory. Therefore inductive reasoning is probabilistic, with some

probability the conclusion is true, given the premises. For example,

Of the life forms known today, 100% depend on liquid water.

Therefore, any newly discovered life form will probably have some dependence

on liquid water.

The above argument can be made every time a life form is discovered and may

be correct every time in the past. The truth of the argument in the past does not

mean in the future it is impossible to discover life not dependent on water; it only

refers to the truth of the argument over the known evidence.

Inductive arguments are not just true or false, since they are not logical

necessities. Instead arguments based on induction are cogent (strong) or not cogent
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(weak). Cogent is when the evidence is complete and relevant, so one is convinced

that the conclusion is probably true. Cogent describes how probable the reached

conclusion is true.

Inductive reasoning is ampliative, therefore it can increase human knowledge.

Since the conclusions are not guaranteed, it can be used to predict future or non-

observed events.

4.2.3 Abductive Reasoning.

Abductive reasoning normally begins with an incomplete set of observations,

then reasons to reach the likeliest possible conclusion for the set [143]. Charles

Sanders Peirce first referred to abduction as ”guessing” [279]. He also stated that

to abduct a hypothetical conclusion, α, from an surprising observation, β, requires

α to be sufficient (or nearly sufficient), but not necessary for β [277]. It is used in

daily decision-making processes that make the best use of the information at hand,

which is often incomplete. Often abduction results in success that exceeds random

luck, Peirce thought that ”man have a natural bent in accordance with nature’s”

which allows man to understand nature through a process called instincts [278]. The

following example was offered by Peirce for abduction:

The surprising fact, C, is observed;

But if A were true, C would be a matter of course,

Hence, there is reason to suspect that A is true.

The hypothesis is present in a premise, but its truth not asserted. Then in the

conclusion the hypothesis is asserted as rationally likely.

A network administrator trying to recover from a cyber attack is an example

of abductive reasoning. Based on a set of symptoms in the network (missing data,

unauthorized access, etc.), the administrator must decide what causes explain most of
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the symptoms. This is necessary so the problem can be fixed and avoided in the future.

Simply stopping the attack and not fixing the cause does not give a healthier network

protected from cyber attacks. Cogent inductive reasoning requires fairly complete

evidence, while abductive reasoning is defined by a lack of completeness, where either

the evidence, explanation, or both are incomplete. When trying to recover from a

cyber attack, system logs may be unavailable to report system details as the attacker

may have deleted or corrupted the logs to hide the attacker’s intentions. Yet, the

administer still needs to reach the best causes (thus the best fixes or mitigations) or

conclusion based on the incomplete set of network symptoms.

Abductive reasoning can be creative, intuitive, or revolutionary. Peirce stated

that abduction in regards to complicated phenomenon lays the ”plank of its advance”

using plausible, instinctive reason [278]. Abductive reasoning is weak when a fact is

used to reason to a potential explanation out of many possible explanations. Strong

abductive reasoning is when a fact is used to reason to the best explanation.

Abductive logic is often said to be ignorance-preserving. When knowledge is

missing the first response is to acquire new knowledge to reach a solution to the

problem and perform some action. The second is to abandon the problem and leave

it unsolved while taking no action. The third is abduction, where the problem is

unsolved, but the result is still the rationale for some action. This is seen in the area

of common law: ”When jurors find an accused guilty of the offence with which he

has been charges, they do not know whether in fact the offence was committed by

him”[368]. While abduction fails to fully answer the ignorance problem, it provides

rationale for selecting specific actions [11]. This shows how humans respond to the

lack of information; in the case of law, the accused is found guilty and convicted.

The strength of abductive arguments can be increased by following the Surprise

Principle and avoiding the Only Game in Town Fallacy [214]. The Surprise Principle
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states [336] that for some observation θ, it strongly favors one hypothesis (H1) over

another (H2) if the following are true:

• If H1 were true, θ is expected to be true.

• If H2 were true, θ is expected to be false.

The ”Only Game in Town” Fallacy happens when there is one explanation

available for a series of surprising events and the reasoning wrongly assumes this

only explanation has to be accepted [214]. Lane presents the following example of

the ”Only Game in Town”:

Hundreds of Americans have reported they have been abducted by space aliens.

The only currently available explanation of this fact is they really have been

abducted by space aliens.

Therefore, hundreds of Americans really have been abducted by space aliens.

Lane claims this abductive argument is not strong. Just because there is only

one explanation, does not mean the reasoning requires it to be believed. Instead the

explanation may be too radical, instead it is possible there is an explanation and it

is unknown.

Abduction has been presented as an epistemic process for belief revision [10]

• anomalous (or novel) experience results in surprising phenomenon.

• a state of doubt interrupts the belief habit and triggers abductive reasoning

• goal is to explain the surprising phenomenon and soothe the state of doubt

• doubt is soothed rather than removed because in abduction the hypothesis needs

to be tested and proven viable before being converted into a belief
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According to Woods, ”not only does abduction not secure us knowledge, it does

not warrant belief” [368]. Abduction only gives a reason to suspect a hypothesis is

true, it does not guarantee the hypothesis is true. In the example of common law, all

the evidence has already been presented to the jury and there is no way to conduct

further testing of hypotheses.

4.3 Belief Revision

Generally beliefs in game theory are represented by a probability distribution

over a set of state and Bayes’ rule is used to model belief revision. Belief revision is

the main building block for two game theoretic solution concepts: perfect Bayesian

equilibrium [31] [53] [114] and sequential equilibrium [204].

In perfect Bayesian equilibrium and sequential equilibrium, a player updates his

beliefs during a game using Bayes’ rule. The information is represented as a set of

nodes in the information set. If during the game an information set is reached which

has zero prior probability, then the beliefs are formed arbitrarily. From this point

forward these new beliefs must be used with Bayes’ rule, unless new information is

received that is conflicting with the revised beliefs.

Alchourron et al. [7] pioneered belief revision in computer science. Known as

AGM theory, it has been widely studied. Gardenfors provides a detailed overview

[127]. In AGM theory beliefs are modeled as belief sets, or sets of formulas.

Information is represented as a formula and belief revision is modeled as an operation,

transforming a belief set into a new belief set that is updated based on the new

information. For more information on belief revision with AGM see [255].

According to Bonanno [22], ”the tools of modal logic have not been explicitly

employed in the analysis of the interaction of belief and information over time.” He

therefore presents a simple modal logic for iterated belief revision, extending his

previous work [54]. For example, based on a patient’s symptoms a doctor concludes
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the patient is suffering from one of the following: viral infection (V), bacterial

Infection (B), medication allergy (M), or food allergy (F). Kripke structures [205]

are used to represent the set of states, i.e. Ω = B, V, M, F. At every time t the

doctor’s beliefs are represented as a binary relation Bt on Ω. Given some state ω ∈

Ω let Bt(ω) = ω′ ∈ Ω : ω Bt ω′, then Bt(ω) is the set of states at time period t, that

is considered possible when the true state is ω.

From the doctor example above, given the true state is F, the evolution of the

doctor’s belief may be: B0(F ) = B, V, B1(F ) = V, B2(F ) = M, and B3(F ) = F. Beliefs

are updated through the receipt of new information. Information is represented as a

sequence of binary relations It, for every time t. Therefore, It represents an individual

learning φ at time t. The state ω is then set ω |= Itφ if and only if the following two

conditions hold:

• For every ω′ such that ωItω′, ω′ |= φ

• For every ω′ ∈ Ω, if ω′ |= φ then ωItω′

These conditions mean that at state ω, Itφ is true if the states reachable from

ω using the relation It coincides with the truth set of φ: It(ω) = {φ{. The beliefs at

time t+1 are the results of the interaction between beliefs at time t and information

received at t+1.

4.4 Game Theory and Iteration

There are a few models in game theory that consider time as an element. These

include repeated games [230, 231, 242], evolutionary game theory [91, 360], and games

with temporal logic. Each of these models handles time in a slightly different matter.

Each is discussed, with an overview given focusing on the time element of the model.
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4.4.1 Repeated Games.

In repeated games, where a base game played for some number of repetitions.

Each repetition can be considered as a time epoch where the players must consider

how their current action will impact the future actions of the other players in the game.

Some of the early work was completed by Ezio Marchi with respect to introducing

time into the minimax theorem [230, 231]. There are many models for repeated games

in the literature, but in 1989 Mertens, Sorin, and Zamir presented a general model for

repeated games [242]. This tuple model includes most other repeated game models

as special cases [248].

ΓΓ , (N,Θ, (Di, Si, ui)iεN , q, p) (4.1)

Where N is a nonempty set of players and i ∈ N is a specific player. The

possible states of nature (environment) is represented by Θ, a nonempty set. Di

denotes a set of moves for player i and Si denotes a set of signals player i may

receive, where D = Xi∈NDi and S = Xi∈NSi. The initial distribution is given by

q ∈ ∆(S × Θ), the transition function by p : D × Θ ⇒ ∆(SxΘ), and the payoff

function by ui : D ×Θ⇒ R.

An example of an infinitely repeated Prisoner’s Dilemma is shown in Figure 4.1.

Using the repeated game equation (Equation 4.1), the Prisoners’ Dilemma can be

described by letting N = {1,2}, Θ={0,1}, Di={fi, gi} and Si = Θ ∪ (D1 x D2). For

each player i ∈ N and d ∈ D, let ui(d, 1) be given by the payoffs listed in Figure 4.1

and let ui(d, 0) = 0. Then let q(1,1,1) = 1, p(d,d,1|d,1) = 0.99, p(0,0,0|d,1) = 0.01,

and p(0,0,0|d,0) = 1. Active play continues in state 1 and stops in state 0. The initial

distribution q(1,1,1) = 1 means with a probably 1 in the first round, both players

will receive a signal “1” and the state of nature will be 1. At each round k+1, if the

state of nature is 1, then each player receives a signal with the results of the preceding
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round. The probability of continuing is 99% given by p(d,d,1|d,1) = 0.99 and the

probability of stopping is 1% given by p(0,0,0|d,1) = 0.01.

Figure 4.1: Prisoners’ Dilemma Game Example.

4.4.2 Evolutionary Game Theory.

Another game theoretic model is from evolutionary game theory with replicator

dynamics [91, 360]. In evolutionary game theory, the population in the current

iteration competes to reproduce or survive to the next population, as shown in Figure

4.2. Each individual in the population will have variation which results in different

strategy selection. The game rules test the individual strategies in order to determine

the payoff or fitness. This payoff is then used to reproduce or replicate the individual

into the next population using replicator dynamics. This produces population (n+1),

which takes the place of the previous population and the game is replayed.

Using the Prisoner’s Dilemma defined in Figure 4.3, an application of

evolutionary game theory (EGT) follows. The game is defined using variables:
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Figure 4.2: Evolutionary Game Theory Model.

• C denotes cooperation

• D denotes defection

• R is the reward attained when all players cooperate

• L is the loser’s reward when all players defect

• P is the punishment received by the cooperator when the other player defects

• W is the reward received by the defector when the other player cooperates

• P < L < R < W

In EGT the payoff matrix for each player is A =
(
R
W

P
L

)
. In the Prisoner’s

Dilemma, there are two pure strategies, which allows a population with two groups to
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Figure 4.3: Evolutionary Prisoner’s Dilemma.

be constructed. In the population the frequency of cooperators is x and the frequency

of defectors is 1 - x. The strategy frequency vector is then given by ~x =
(

x
1−x

)
.

The fitness of the population is then given by ~xTA~x and the fitness of the

cooperators is then (A~x). If ~x = ~x(t) then the cooperators replicator dynamics is

ẋ = x((A~x)1 − ~xTA~x). The frequency of cooperators converges to 0, leaving only

defectors in the population, the evolutionary stable strategy (ESS). This means D,

defectors, is a Nash equilibrium and ESS.

4.4.3 Temporal Logic.

Propositional game logic has been used to study the game structure for algebraic

properties [274]. This was improved upon by Pauly, who developed Coalition Logic

(related to Alternating Temporal Logic) and Game logic (related to Propositional

Dynamic Logic and the modal ν-calculus) [276]. Pauly showed relationships between

games and software programs using Game Logic, as well as to describe coalitions using

Coalition Logic [276]. Other research used a dynamic epistemic language to study the
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change of information caused by the player’s actions in a game by van Ditmarsch [87],

while van Benthem used dynamic logic in order to describe games and the strategies

of the players in those games [46].

Alternating temporal logic is applied to a game where players and an environment

alternate moves, allowing quantification of the possible outcomes of the game [19].

Goranko has shown the relationship between Pauly’s Coalition Logic and alternating

temporal logic [140]. These logics focus reasoning on the existence of strategies, while

the strategies are not directly considering in reasoning.

van der Hoek et al. provide the foundation for the work of Ramanujam

and Simon. They develop logics for strategic reasoning and equilibrium concepts

[159, 172]. Ramanujam and Simon [292] present a logic for strategic reasoning and

equilibrium concepts using alternating temporal logic. The authors focus on studying

strategies by their properties. Strategies can be partial, where they are not completely

known as a function instead of atomic (similar to the work of [159, 172]). They

use partial strategy specifications, which leads to more generality in reasoning. For

example, “(partial) strategy σ ensures the (intermediate) condition α”. [292]

4.4.3.1 Game Theoretic Temporal Model.

Ramanujam and Simon present a temporal game model [292] that is divided into

discrete sections, as shown in Figure 4.4. The model consists of a game and game

arena that provide the foundational elements of the game shown in Figure 4.5. A

game defines the structure of the game and is defined as:

G , (N,Σ,Φ, {�i}i∈N) (4.2)

Where N is a nonempty finite set of players and i ∈ N is a specific player. Σ is a

nonempty finite set of player actions. A game arena, Φ, defines the rules about game
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Figure 4.4: Temporal Game Model Presented by Ramanujam and Simon.

Figure 4.5: Overview of Temporal Game Model.
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progression and termination. The preference relation, �i, orders the preferences of

player i over the player actions Σ. The preference relation is complete, reflexive, and

transitive [292].

A game arena defines the rules about game progression and termination and is

defined as:

Φ , (W,−→, w0,χ) (4.3)

W is a set of game positions or states. The move function, −→, defines a

set of transitions between game positions such that (WxΣ) −→ W . The initial

node of the game is given by w0. The set of successors of w ∈ W is defined as
−→w = {w′ ∈ W | w a−→ w′ for some a ∈ Σ} and the terminal node is defined as
−→w = {∅}. The function χ assigns every node w ∈ W the player whose turn it is such

that χ : W → N .

4.4.3.2 Strategy Switching in Temporal Game Model.

Paul et al. propose a method to specify a player’s rationale for switching

strategies during the course of a game [275]. The focus is on whether players will

settle on a strategy without further switching of strategies. The strategy switching

notation from [275] is as follows:

• σ1 ∪ σ2 the player can play according to the strategy σ1 or the strategy σ2

• σ1 ∩ σ2 if σ1 is defined at a history t ∈ T then the player follows σ1. Else if σ2

is defined at a history t ∈ T then the player follows σ2. If σ1 and σ2 are defined

at history t, then the moves(actions) specified by σ1 and σ2 at history t are the

same. σ1 and σ2 are said to be compatible and the ∩ operator is used to denote

compatible pairs of strategies.
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• σ1 _ σ2 the player plays the strategy σ1 and then after some time (based on

history), switches strategies and plays σ2. The position in time of the strategy

switch is unknown in advance and not fixed.

• (σ1 + σ2) allows the player to choose either strategy σ1 or σ2 at every point of

the game

• ψ?σ based on the history of game play, the player tests if the property ψ holds

and if it holds the player according to σ

4.4.3.3 Branching Time Frames.

Surowik [344] uses temporal logic of branching time first presented by A.

N. Prior[287] which leads to an indeterministic temporal logic. Modification of

the structure of time removes determinism, making the logic indeterministic [344].

Temporal logic of branching time is used to model the dynamic interactions between

players in a temporal context, given the notion of process. The author models

extensive games in temporal logic by adding a notion of agent and a notion of

prediction to the semantics [344].

Surowik starts with the notion of branching-time frames presented by Bonanno

[55]. A branching-time frame with agents (BTA-frame) is a tuple:

BTA-frame = ‹T, ≺, Rii∈N›

– T âĂŞ a set of nodes

– ≺ - a binary relation on T (precedence relation) satisfying

A1) antisymmetry: if t1 ≺ t2, then t2 ⊀ t1

A2) transitivity: if t1 ≺ t2 and t2 ≺ t3, then t1 ≺ t3

A3) left linearity: if t1 ≺ t3 and t2 ≺ t3, then t1 = t2 or t1 ≺ t2 or t2 ≺ t1

– N = {1,...,n} a finite set of agents

125



– Ri is a binary relation on T (Ri a subrelation of ≺) - if t1Rit2, then t1 ≺

t2 for any I ∈ N

The properties of antisymmetry (A1), transitivity (A2), and left linearity (A3)

contain the definition of branching time, with the left linearity property limits the

possible frames to frames where the past is unique and there are alternatives in the

future at any node[344]. The binary relation Ri allows an agent, denoted i, to make

a decision which leads to a node where the agent does not have any available actions.

The notion of prediction is added to a BTA-frame by defining the prediction

binary relation as ≺p on T, such that [344]:

B1) if t1 ≺p t2, then t1 ≺ t2 (≺p is a subrelation of ≺)

B2) t1 ≺p t2 and t2 ≺p t3, then t1 ≺p t3

B3) if t ≺ t1 for some t1, then t ≺p t2, for some t2

B4) if t1 ≺ t2, t2 ≺ t3 and t1 ≺p t3, then t1 ≺p t2 and t2 ≺p t3

The BTA-frame is then used to build a game model based on the extensive form

with perfect information. For perfect information games the following sentences are

introduced:

S1) µi = q, where i ∈ N and q ∈ Q i.e. the player’s payoff

S2) q1 ≤ q2, i.e. the payoff q1 is less than or equal to q2

Given this a BTA frame for a perfect information game can be created, denoted

T . The game modelM is based on T with an added valuation function V : s −→ 2T

with the following conditions [344]:

• if the sentence is of the form of S1, then V(S1) = T
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• if the sentence is of the form of S2, then V(S2) = {t ∈ L(T): µ(t) = q}

The game model can then be used to determine the truth of formulas that

describe properties of games. For example, the author models the game theoretic

concept of backward induction with the context of temporal logic branching time.

Samuel Reid [297] presents a similar temporal logic model for game theory. A

branching-time frame is used, but a history is added in order to be able to determine

if the formulas are satisfied. A history h ∈ H in T is a maximal linearly ordered

subset of T, where H is the set of all histories in T [297]. Articulated histories are

used to split histories into past and future time points. ReidâĂŹs definition of an

articulated history and time point instant is:

• An articulated history of a time point t ∈ T is a pair (hp(t), (hf(t)), where

(hp(t) = {tâĂŸ — tâĂŸ ¡ t} is the set of all past time points of t in all histories

containing t and hf(t) = {tâĂŸ — tâĂŸ ¡ t} is a set of future time points of t

which determines a unique history h = hp(t) ⋃ {t} ⋃ hf(t)

• A set of time points {t1, âĂę., tn} belongs to an instant I ⊆ T if ti ≮ tj and

—hp(ti)— = —hp(tj), ∀ i,j

These definitions then allow a branching-time frame, T , be a game, G. If Ψ is

a formula that denotes a tie between players, Reid gives the following definition of a

game:

• In an n-player game G, the Instant Ii is player kâĂŹs turn if k ≡ I mod n.

Furthermore, player k wins the game at a turn t in a history h if |hf (t)| = 0

and t ∈ Ii with k ≡ i âĂŞ 1 mod n and Gh,t |= ⇁ Ψ
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4.4.3.4 Other Approaches.

Agotnes et al. discuss irrevocable strategies under Alternating-time Temporal

Logic (ATL) [4]. In ATL in order to achieve a goal, an agent chooses a strategy and

then follows the strategy without considering what other agents do, which leads to

the goal always being true. Although in ATL, the strategies are revocable, where the

agent is not restricted by previous choice of strategies resulting in the state where the

goal is evaluated. Irrevocable strategies are often assumed in game theory [4]. The

authors discuss variants of ATL where the strategies are irrevocable. The aim is to

further multi-agent logic by aligning them with strategies in game theory. The two

variants are IATL (memory-less irrevocable strategies) and MIATL (memory-based

irrevocable strategies). In IATL the model is updated directly by fixing the choices of

every agent in a given state as defined by the agent’s chosen strategy. In MIATL, it

is not possible to update the model directly; instead the model must be represented

as a tree-like structure where the branches that are not compatible with the current

strategy are eliminated.

Anticipation games where developed in order to handle concurrent interactions

among players [65]. Anticipation games are based on game theory [269] using

Timed Alternating-time Temporal Logic (TATL) to model concurrent interactions by

executing time-based rules [164]. Using timed-based rules the model can incorporate

an element of surprise where one player receives an advantage over the other [9].

In the Attacker-Defender environment, surprise may happen by the attacker using a

zero-day exploit or the defender patching a known vulnerability before the attack can

exploit it [358]. Anticipation games have been extended to determine the cost and

time needed to eliminate an attack [63, 64].
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4.5 Summary

In this chapter, temporal logic is explored as a foundation for adding time to the

hypergame model, which has currently not been researched. Reasoning is discussed

as a way to formalize the decision making in the hypergame analysis of the players.

Different types of reasoning can be used by the players at different points of the game.

For example, in hypergames with strategic surprise a player would use abductive

reasoning in order to try to reasoning about missing information.

The foundation provided in this chapter is built upon in the following chapters

as hypergame theory is extended with temporal logic and abductive reasoning is used

in the game model. The next chapter provides an overview of the problem domain

and discusses how temporal logic is used to extend hypergame theory. Chapter three

also provides the problem domain for the application of abductive logic to hypergame

theory.
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V. Hypergame Models

This chapter develops the hypergame models in mathematical notation for clear

understanding. There are two distinct hypergame models presented in the background

literature. The first was presented by Bennett [34, 39], providing the foundation of

hypergame theory. The second was presented by Vane in his doctoral dissertation

work [356], building on the work by Bennett. Vane’s model was later extended by

Gibson [135].

5.1 Bennett’s Model

The original hypergame representation proposed by Bennett in his seminal papers

on hypergame theory [34, 39], is based on using ordered sets of outcomes. The

representation consist of two different, but related, game theoretic models. Using

Bennett’s original hypergame definitions and the notation presented by Fraser and

Hipel [106], a hypergame is:

Definition 9. Bennett Hypergame is given by H , {G1, G2, ..., Gn} where Gi is

the perceived game by player i.

A game, G, is defined as:

Definition 10. A game is given by G , {N, θ, (Σ, µ)i∈N ,≤}

Where N is the set of players in the hypergame from the view of the player under

consideration. The set of possible game states, θ, is given for the perceived game. For

each player in the perceived game, there is a set of strategies/actions and a payoff

function µ, such that µ : Σ× θ ⇒ R. Finally, a preference relation, ≤, over µ is used

to order the payoffs of the game.
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5.2 Vane’s Model

The second hypergame model is described by Vane in the literature. Vane

expands on Bennett’s hypergame theory by developing Hypergame Normal Form

(HNF). HNF added hyperstategies to the hypergame model, in addition to the

Nash equilibrium solution. Each hyperstategy represents a solution to the hypergame

where the player in question may be able to obtain an outcome better than the Nash

equilibrium.

Vane also adds belief contexts to the model in order to represent the belief that

the opponent chooses a particular strategy. Risk is incorporated into the model

through the fear of being outguessed. Vane restricts Bennett’s hypergame model

by only focusing on a single player’s view during game play. While this appears to

reduce the information available in the model, a given player would have their game

perception and can incorporate what their opponent does into the belief contexts.

For a hypergame in HNF, the model is:

Definition 11. Hypergame Normal Form (HNF) is given by HNFrow , {Grow}

where Grow refers to the row player and is the primary point-of-view during game play.

The HNF model only contains a single game, since it only models the perception

of the row player and does not consider the perceptions of other players. A game, G,

is defined as:

Definition 12. A game in HNF is given by G , {N, θ, β, (ΣFull, µ)i∈N ,≤, γ}

Where N is the set of players in the hypergame from the view of the player under

consideration. The set of possible game states, θ, is given for the perceived game.

The belief of the primary point-of-view player is represented by β. For each player in

the perceived game, there is a set of strategies/actions ΣFull and a payoff function µ,

such that µ : ΣFull×θ×β ⇒ R. The set of strategies/actions ΣFull is made up of two

131



types of strategies: normal and hidden. Therefore ΣFull = {ΣNormal,ΣHidden}, where

ΣHidden represent strategies that are not believed to be considered by the player, but

are available as valid in the game. Finally, a preference relation, ≤, over µ is used to

order the payoffs of the game. The fear of being outguessed, γ, is a percentage such

that 0 ≤ γ ≤ 1.

5.3 Extension of Vane’s Model

Gibson extends Vane’s HNF model to use variable payoff/utility functions [135].

Hypergames initially have only been represented using an ordered set of outcomes

which represents preference as Bennett has done. Gibson updates the hypergame

model with the ability to have variables in payoff functions. This update requires

variable definitions, such as payoff function variables, initial variable values, variable

update function, and variable constraints.

Bennett’s original hypergame model can also be updated to use variable payoff

functions. While the HNF model provides more realistic modeling, this model is

provided for completeness. For a perceived game, denoted G, the updated model for

hypergames with variable payoff functions is:

Definition 13. Variable Payoff Functions are represented in a game by G ,

{N, θ, β, (ΣFull, µ)i∈N ,≤,V , γ}

Most of the parameters are the same between Vane’s model and Gibson’s model.

Gibson’s model adds, V , which are payoff function variable definitions from the view

of the primary point-of-view player. The payoff function variable definitions can be

defined as:

Definition 14. Payoff function variable definitions are given by V ,

{ω, λ, ψ, σ}
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where ω are the payoff function variables. The initial variable values at the start

of game play is represented by λ. The variable update function(s) are represented by

ψ and the constraints placed on the variables during updating are defined as σ. The

payoff function µ, must now use V , such that µ : ΣFull × θ × β × V ⇒ R.

5.4 Extension of Theorems

Sasaki [310] presents theorems (Theorems 10, 12, 11 and Lemma 13) that all

focus on a simple hypergame. Simple hypergames are hypergame where the only

difference between the perceived games is in the outcomes. This means the current

theorems are not directly applicable to the hypergame model presented by Vane [356].

In Vane’s model (as well as numerous examples from Bennett’s work [34]) there is

overlap of the perceived games between the players. The lack of overlap often occurs

because of additional strategies (called hidden strategies in Vane’s model). A base

game similar to Sasaki’s Theorem 11 is defined as:

Finding 1. Let H = (Gp, Gq) be a hypergame with Gp = (N, Σp, up) and Gq = (N,

Σq, uq) where p, q ∈ N. A normal form game G = (N, Σ, u) is called the base game

of H iff u = up, u = uq, and Σ = Σp ∩ Σq , . Let the base game (BG) of hypergame

H be denoted by BGH .

A simple conclusion from the previous Finding, is that subgames always have

the same base game under Vane’s model.

Finding 2. Subgames always have the same base game

The game that remains after considering the BG can also be defined. This part of

the game is important because this is where misperception and deception can happen.

The difference game of a hypergame is:

Finding 3. Let H = (Gp, Gq) be a hypergame with Gp = (N, Σp, up) and Gq = (N,

Σq, uq) where p, q ∈ N. A normal form game G = (N, Σ, u) is called the difference
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game of H iff u = up ∪ uq \ up ∩ uq, Σ = Σp ∪ Σq \ Σp ∩ Σq, and u , or Σ , . Let

the difference game of hypergame H be denoted by ∆H .

The hyper Nash equilibrium solution for a simple hypergame can also be extended

to include differences in strategies as well as outcomes in gmaes. The definition is the

same as Sasaki [310] but inclues the additional constraint that the strategy profile

must be in both perceived games. Lemma 13 is still valid according to the previous

finding.

Finding 4. Let H = (Gp, Gq) be a hypergame with Gp = (N, Σp, up) and Gq = (N,

Σq, uq). Then a∗ ∈ Σp ∩ Σq is called a stable hyper Nash (SHN) equilibrium iff a∗ ∈

N(Gp) and a∗ ∈ N(Gq) where N(G) represents the Nash equilibriums for game G.

5.5 Summary

This chapter defines the hypergame models found in the literature using concise

mathematical notion. The two major models from Bennett and Vane, as well as the

extended by Gibson are covered. Theorems presented in other literature are extended

to better represent Vane’s model in this chapter. The mathematical notion for the

models serves as the foundation of integrating hypergames and temporal constructs

for a new framework. In the next chapter the hypergame models are integrated with

temporal logic to from a temporal hypergame framework.
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VI. Temporal Hypergame Model

Given the background on hypergame models (by Bennett and Vane), as well

as game theoretic temporal aspects, a temporal hypergame model can be used

to reason about conflicts, specifically the decisions and the misperceptions of the

participating players. This chapter aims to unify the two approaches, creating

a temporal hypergame model. A base temporal model is presented, representing

Bennett’s original hypergame model [34].

This base temporal model is the foundation refined using the enhancements

provided by Vane and Gibson. Vane’s Hypergame Normal Form (HNF) adds four

enhancements to the base temporal model including beliefs, fear of being outguessed,

hyperstrategies, and hidden strategies (to support the restriction of row’s point-of-

view) [356]. Gibson enhances Hypergame Normal Form (HNF) by adding support

for variable payoff functions [135]. Using this temporal hypergame framework, the

concepts of trust, misperception, and deception are constructed.

6.1 Base Hypergame Model

The temporal hypergame model builds on the game theoretic temporal model

by adding perceptions. A high level overview of the temporal hypergame model is

shown in Figure 6.1. Each hypergame is composed of multiple games, with each game

having a game arena.

In a first level hypergame, each player may have an unique view of the game, or

conflict. This results in a hypergame being formulated as a set of games, one from

each player. A superscript “T” is used to denote temporal models. For n players, a

temporal hypergame is defined as a set:
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Figure 6.1: Overview of Temporal Hypergame.

Definition 15. A Temporal Hypergame is given by HT , {GT
1 , G

T
2 , ..., G

T
n} where

GT
i represents the perceived game by the ith player. The perceived game specifies the

winning conditions, which specify the game outcomes.

Definition 16. A Perceived temporal game in a hypergame is given by GT ,

{N,Σ,ΦT ,≤ii∈N} where N is a non-empty set of players (at least two). Σ represents

the non-empty finite set of player actions. A game arena, ΦT , defines the rules about

game progression and termination. A preference relation, ≤i, is given for each player

and represents the perceived preferences of the player instead of actual preferences.

A game arena, ΦT , is a finite graph defining the rules about game progression

and termination. A game arena is defined as:

Definition 17. A Game Arena in a temporal game is given by ΦT , {W,→, w0, χ}

where the set of game positions, w, represents the outcomes and possible states as the
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game progresses. The move function, →, is responsible for transitioning the game.

The initial node, or position of the game, is represented by w0. χ : W → N is the

function that assigns every node w ∈ W the player whose turn it is at the node.

In this model the hypergame provides perceptions and subgames, the game

provides structure, and the game arena defines rules for progression and termination,

as shown in Figure 6.2. Another view of the model is through the learning/decision

making process defined in Figure 3.1. The hypergame models the player’s perceptions,

the game models the structure of the learning/decision making process, and the game

arena provides the rules for orienting and observing, as well as for feedback and

learning.

Figure 6.2: Temporal Hypergame Structure.
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6.2 HNF Refinements

The Hypergame Normal Form proposed by Vane [356] offered a few refinements to

the original hypergame model. These refinements include the row’s belief of the what

the column player does, the fear of being outguessed, Row Mixed Strategy (RMS) and

Column Mixed Strategy (CMS), and the focus on row’s point of view. Gibson further

refined the Hypergame Normal Form (HNF) model to use variable update functions.

These additions need to be integrated into the temporal model. An outline of how to

integrate beliefs, fear-of-being-outguessed, hyperstrategies, and row’s point-of-view is

given in symbolic form.

6.2.1 Beliefs.

Beliefs are incorporated into the Hypergame Normal Form (HNF) model in two

different ways. The first is through the use of Column Mixed Strategy (CMS), which

represents the row player’s beliefs about the percentages the other player is using

to select a strategy. These can be known prior or calculated by finding the Nash

Equilibrium of subgames. The second is through belief contexts, which represents

the row player’s beliefs the other player is using the particular strategy. The game

arena ΦT . is updated as follows to reflect the row player’s beliefs:

Definition 18. A Game Arena with Beliefs is given by ΦT , (W,−→

, w0, β, C, ↪→, β0, C0,χ)

where β is the belief contexts over the game, and β0 is the initial set of beliefs

for the row player about the strategies the other player will choose to play. C is

the Column Mixed Strategy (CMS) over the game, while C0 represents the initial

set of Column Mixed Strategy (CMS) values for the row player. The ↪→ is the

update function for the row player’s beliefs, where Wcurrent × β× ≤ii∈N ↪→ βnew and

Wcurrent × C× ≤ii∈N ↪→ Cnew. The remaining symbols retain the previous meaning.
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6.2.2 Fear-of-being-outguessed.

The HNF model uses the fear-of-being-outguessed to represent a player’s

willingness to accept risk by deviating from the Nash equilibrium and introduce

strategic surprise into the game. At the heart of the HNF model, the fear-of-being-

outguessed, measures uncertainty the row player has about the game. This is just one

measure of uncertainty, and other measures can be included into the model in a similar

way if they lead to better strategy selection and ultimately to better payoffs/outcomes.

The fear-of-being-outguessed can be static for the entire game or it can be

dynamically update based on game play and the row player’s beliefs. It can cause

oscillation between strategies (including mixed) and may not lead to equilibrium

solution. This is especially important with dynamically updating the variable. These

effects can be reduced by updating the fear-of-being-outguessed based on maximizing

the column player’s expected utility rather than minimizing the row player’s expected

utility.

The game arena ΦT is updated as follows to reflect the fear-of-being-outguessed:

Definition 19. A Game Arena with the Fear-of-being-Outguessed is given

by ΦT , (W,−→, w0, β, C, ↪→, β0, C0,Υ,�, γ,χ)

where Υ is the fear-of-being-outguessed over the game, and γ is the initial

fear-of-being-outguessed. The fear-of-being-outguessed has the following constraint:

0 ≤ Υ, γ ≤ 1. The � is the update function for the row player’s fear-of-being-

outguessed, where Υcurrent×Wcurrent� Υnew. This also has an affect on the move

function in the game arena by influencing the possible move states: W ×Υ a−→ w′.

6.2.3 Hyperstrategies.

Given the progression of hypergames to date (Bennett, Vane, Gibson) and

considering the element of strategic surprise, it is necessary to represent the ability of

the players to switch strategies. This is especially true when looking at hyperstategies
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such as Row Mixed Strategy (RMS). Row Mixed Strategy (RMS) are based on

what the row player believes (or perceives) the column player is going to play in the

game. Since only one strategy applies to the whole game (represented by the Nash

equilibrium), the row player would be free to switch to a hyperstrategy if he believed

the other player was playing a subgame. Players can start with a set of potential

strategies (hyperstrategies) and switch between each at will, which could be event

based, time based, etc. Paul, et al. [275] provide a syntax for representing players’

rationale for switching strategies which is used to represent strategy switching in the

hypergame model. A strategy set with switching is defined as:

Definition 20. Strategy set with switching in a hypergame is given by Πnew :,

σ ∈ Σi|σ1 ∪ σ2|σ1 ∩ σ2|σ1 _ σ2|σ1 ∗ σ2|ψ?σ

The expanded meaning of the strategy switching syntax is as follows:

• σ1 ∪ σ2 the player can play according to the strategy σ1 or the strategy σ2

• σ1 ∩ σ2 if σ1 is defined at a history t ∈ T then the player follows σ1. Else if σ2

is defined at a history t ∈ T then the player follows σ2. If σ1 and σ2 are defined

at history t, then the moves(actions) specified by σ1 and σ2 at history t are the

same. σ1 and σ2 are said to be compatible and the ∩ operator is used to denote

compatible pairs of strategies.

• σ1 _ σ2 the player plays the strategy σ1 and then after some time (based on

history), switches strategies and plays σ2. The position in time of the strategy

switch is unknown in advance and not fixed.

• (σ1 ∗ σ2) allows the player to choose either strategy σ1 or σ2 at every point of

the game
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• ψ?σ based on the history of game play, the player tests if the property ψ holds

and if it holds the player according to σ

Strategy switching does not guarantee the game results in a stable solution. At

any point of time during a game when strategy switching occurs, the game can move

to a different equilibrium. It is only possible to move to a different equilibrium and

is not guaranteed.

6.2.4 Row’s Point-of-View.

In HNF, Vane restricted the model to only the row’s point-of-view. This removes

the additional perceived games by other players. In reality the perceived games of

other players may not be known, except in cases of historical analysis (which is the

primary use for the Bennett version of the hypergame model). In Vane’s model the

importance is placed on the idea of subgames, or games that vary in a same way,

from the row’s master perceived game.

Definition 21. HNF model with only row’s point-of-view is given by

HNFrow , {Grow}

where Grow refers to the row player and is the primary point-of-view during game

play. The HNF model only contains a single game (a restriction of Bennett’s original

model), since it only models the perception of the row player and does not consider

the perceptions of other players.

Definition 22. A Game is defeined as GT , {N, (ΣFull)i∈N ,ΦT ,≤ii∈N}

The set of strategies/actions ΣFull is made up of two types of strategies: normal

and hidden. Therefore ΣFull = {ΣNormal,ΣHidden}, where ΣHidden represent strategies

that are not believed to be considered by the player, but are available as valid in the

game.

141



6.2.5 Variable Payoff Refinements.

Another refinement to the HNF model is from Gibson [135] who integrated

variable payoff functions into the model. The variable payoff functions are defined

by a set of variables, initial values, an update function, and a set of constraints. The

game arena ΦT is updated as follows to reflect the variable payoff functions:

Definition 23. Temporal Game Arena with Beliefs and fear-of-being-

outguessed is given by ΦT , (W,−→, w0, β, C, ↪→, β0, C0,Υ,�, γ,V ,χ)

The addition to the game arena is the V representing variable payoff functions.

Definition 24. Variable Payoff Functions is defined as V , {ω, ωinit, ψ, δ} where

ω are the payoff function variables. The initial variable values are given by ωinit. The

variable update function is ψ subject to the constraints defined by δ.

6.3 The Temporal Model

The temporal work of Ramanugam and Simon [292] serves as the foundation

of the hypergame temporal model. The temporal model is extended to incorporate

hypergame theory, including Bennett’s and Vane’s models. A superscript “T” is

used to denote temporal models. An overview of the variables used in the temporal

hypergame framework are shown in Figure 6.3. The model is presented with the

hypergame refinements for completeness. For n players, the temporal hypergame is

defined as:

Definition 25. Temporal Hypergame is denoted as HT , {GT
1 , G

T
2 , ..., G

T
n} for n

∈ N where GT
i represents the perceived game by the ith player. The perceived game

specifies the winning conditions, which specify the game outcomes.

Definition 26. Perceived Temporal Game is denoted by GT , (N,ΣFull,ΦT , {�i}i∈N)
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Figure 6.3: Temporal Hypergame Framework Variables.

Where N is a nonempty finite set of players and i ∈ N is a specific player. Σ is a

nonempty finite set of player actions. A game arena, Φ, defines the rules about game

progression and termination. The preference relation, �i, orders the preferences of

player i over the player actions ΣFull. The set of strategies/actions ΣFull is made up

of two types of strategies: normal and hidden. Therefore ΣFull = {ΣNormal,ΣHidden},
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where ΣHidden represent strategies that are not believed to be considered by the player,

but are available as valid in the game. The preference relation is complete, reflexive,

and transitive.

A game arena, Φ, is a finite graph defining the rules about game progression and

termination:

Definition 27. A Temporal Game Arena is denoted by ΦT , (W,−→

, w0, β, C, ↪→, β0, C0,Υ,�, γ,V ,χ) where W is a set of game positions or states. The

move function, −→, defines a set of transitions between game positions such that

(WxΣ) −→ W . The initial node of the game is given by w0. The set of successors of

w ∈ W is defined as −→w = {w′ ∈ W | w a−→ w′ for some a ∈ ΣFull} and the terminal

node is defined as −→w = {∅}.

The belief contexts, β, over the game and β0 is the initial set of beliefs for ith row

player about the strategies the other player chooses to play. C is the Column Mixed

Strategy (CMS) over the game, while C0 represents the initial set of Column Mixed

Strategy (CMS) values for the row player. The ↪→ is the update function for the row

player’s beliefs, where Wcurrent × β× ≤ii∈N ↪→ βnew and Wcurrent × C× ≤ii∈N ↪→ Cnew.

The fear-of-being-outguessed, Υ, over the game represents the risk of selected

a hyperstrategy and γ is the initial fear-of-being-outguessed. Υ is subject to the

following constraint: 0 ≤ Υ, γ ≤ 1. The� is the update function for the row player’s

fear-of-being-outguessed, where Υcurrent×Wcurrent� Υnew. This also has an affect

on the move function in the game arena by influencing the possible move states:

W ×Υ a−→ w′.

The addition to the game arena is the V representing variable payoff functions.

The function χ assigns every node w ∈ W the player whose turn it is such that

χ : W → N . If χ(w) = k and w is not a terminal node then player k must choose an

action at w.
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When χ(w0) = k, player k owns the game position w0 and must choose an action

’a’ available at w0. The new game position is then w′ where w0
a−→ w′. A play (denoted

p) in Φ is a sequence of moves, or infinite path, p = w0
a1−→ w1

a2−→ ... ak−→ wk where

wk is a terminal node or the path is infinite: p = w0
a1−→ w1

a2−→ ... where ∀ i : wi
ai−→

wi+1.

Definition 28. Variable Payoff Function is denoted by V , {ω, ωinit, ψ, δ} where

ω are the payoff function variables. The initial variable values are given by ωinit. The

variable update function is ψ subject to the constraints defined by δ.

An extensive form game tree T can be associated with a game arena, Φ.

Definition 29. Extensive Form Game Tree is denoted by T , (S,⇒, s0, λ)

The countably infinite tree, (S,⇒), is rooted at s0 with edges from ΣFull. The

function λ maps the nodes of the tree to game positions - λ : S → W . Where λ has

the following properties:

• λ(s0) = w0

• ∀s, s′ ∈ S, if s a=⇒ s′ then λ(s) a=⇒ λ(s′)

• if λ(s) = w and w a−→ w′ there exists s′ ∈ S s.t. s a=⇒ s′ and λ(s′) = w′

With the extensive form game tree T and some node s, a restriction of T to s,

denoted T∫ , is the unique path from the root s0 to s, the tree root.

If T is the extensive form game tree and s1 is a node in T . At s1 a strategy for

player 1 is defined as ν = (S1
ν , S2

ν , ⇒ν , s1). ν is a subtree of Ts1 which represents the

unique path from s0 to s1 in T satisfying:

• s1 ∈ S1
ν , where χ(λ(s1)) = 1

• ∀ s ∈ TG rooted at s1; if s ∈ Siν then for some ai ∈ Σ, ∀ s′ such that s ai=⇒ s′,

then s ai=⇒ν s
′
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6.3.1 Hypergame Strategies.

A strategy for a given player i is defined by a function νi : Si → ΣFull, which

specifies the moves for the player at every game position. If T is the extensive form

game tree and s1 is a node in T . At s1 a strategy for player 1 is defined as ν = (S1
ν , S2

ν ,

⇒ν , s1). The strategy ν can be viewed as a subtree of T . This means that for each

node assigned to player i, there is a unique outgoing edge and for nodes belonging to

other players every available move is included [134]. The strategy tree is defined as

Tν = (Sν , ⇒ν , s0, λ̂ν) associated with ν is a least subtree of T which represents a

unique path in T satisfying:

• s0 ∈ Sν

• For any s ∈ Sν

– if λ̂(s) = i, there exists a unique s′ ∈ Sν and action a s.t. s ai=⇒ s′

– if λ̂(s) , i, ∀ s′ s.t. s ai=⇒ s′, then s ai=⇒ν s
′

Ωi(T ) denotes the set of player i’s strategies in game G with extensive form game

tree T . A play p : s0a0s1 in the game, is consistent with ν if ∀ j ≥ 0, sj ∈ Si, then

ν(sj) = aj. A strategy profile ‹νi, νi+1, ..., νN ›results in a play pνi+1,...,νN
νi

that is

unique in G.

6.3.2 Hypergame Partial Strategies.

Strategy specifications can be partial, in which a player is allowed to assume an

opponent plays α whenever p holds without considering or knowing the conditions

that would cause the opponent to pick another move b in the opponent’s strategy.

Partial strategies lead to more generality in reasoning with the temporal logic.

A partial strategy for a given player i is defined by a function σi : Si ⇀ ΣFull,

which specifies the moves for the player at some, but not every, game position. The

domain of the partial function σi is denoted by Dσi . The partial strategy σ can be
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viewed as a subtree of T . This means that for some nodes that belong to player i,

there is an unique outgoing edge and for player i’s other nodes (as well as the nodes

belonging to the other players) every move is included [134].

The partial strategy tree is defined as Tσ = (Sσ, ⇒σ, s0, λ̂σ) associated with σ

is a least subtree of T which represents a unique path in T satisfying s0 ∈ Sν . For

any s ∈ Sν , if λ̂(s) = i and s ∈ Dσi , there exists a unique s′ ∈ Sν and action a s.t. s
ai=⇒ s′. Otherwise if (λ̂(s) = i and s < Dσi) or λ̂(s) , i, ∀ s′ s.t. s ai=⇒ s′, then s ai=⇒ν s

′.

Partial strategies can be represented by a set of total strategies, and any total

strategy can be represented as a partial strategy, where the set of total strategies is

s singleton set. For the partial strategy σ and the partial strategy tree Tσ the set of

total strategy trees T̂σ is defined as T = (S,⇒, s0, λ̂) ∈ T̂σ if and only if the following

are true:

• if s ∈ T then ∀ s′ ∈ ~s, s′ ∈ T implies s′ ∈ Tσ

• if λ̂(s) = i, there exists a unique s′ ∈ Sσ and action a such that s a=⇒σ s
′

6.3.3 The Logic - Strategy Specification.

The logic for reasoning about composite strategies is divided into two parts:

strategy specification and game formulas. Atomic strategy formulas specify the

conditions a player tests before making a move. Connectives are then used to

construct composite strategy specifications from the atomic strategy formulas. Game

formulas represent the model logic description of the game area. It specifies the results

of a player executing a strategy, choosing a move a, and ensuring an outcome at some

intermediate time α.

The following preliminaries are useful before describing the logic and its

semantics. For some countable set X , let the past combinations of the members

of X be denoted by Past(X ):
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ψ ∈ Past(X ) :, x ∈ X | ¬ψ | ψ1 ∨ ψ2 | �ψ

These formulas obtain meaning when applied over a finite sequence. For example,

given any sequence ξ = t0t1 . . . tm, V : {t0, . . ., tm} → 2X , and n such that 0 ≤ n ≤

m, ξ, n |= ψ (the truth of the formula ψ ∈ Past(X ) at k) as:

• ξ, n |= p iff p ∈ V(tk)

• ξ, n |= ¬ψ iff ξ, n 6|= ψ

• ξ, n |= ψ1 ∨ ψ2 iff ξ, n |= ψ1 or ξ, n |= ψ2

• ξ, n |= �ψ iff ∃ j : 0 ≤ j ≤ n such that ξ, j |= ψ

Let P i = {pi0, pi1, . . .} represents a set of proposition symbols where τi ∈ P i, for

I ∈ N. Let P = ⋃
i∈N P

i ∪ {leaf}. τi represents which player’s turn it is to move at a

given game position. A terminal node is specified by leaf. The finite set of player’s

moves, σ = {a1,a2, . . ., am}, parameterizes the logic when game areas over σ are

considered.

Definition 30. Let Strati(P i), for i ∈ N be the strategy specification set given by:

Strati(P i) :, [ψ 7→ ak]i | σ1 + σ2 | σ1 · σ2 | πι ⇒ σ

where πι ∈ Stratι (⋂i∈N P i) (the other player i’s strategy specification), ψ ∈

Past(P i) and ak ∈ σ.

Definition 31. Let Switchi, for i ∈ N be the strategy specification set with strategy

switching given by: Switchi := σ ∈ Σi|σ1 ∪ σ2|σ1 ∩ σ2|σ1 _ σ2|σ1 ∗ σ2|ψ?σ

For a partial strategy denoted by σ, the strategy switching operators have the

following expanded meaning:

• σ1 ∪ σ2 the player can play according to the strategy σ1 or the strategy σ2
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• σ1 ∩ σ2 if σ1 is defined at a history t ∈ T then the player follows σ1. Else if σ2

is defined at a history t ∈ T then the player follows σ2. If σ1 and σ2 are defined

at history t, then the moves(actions) specified by σ1 and σ2 at history t are the

same. σ1 and σ2 are said to be compatible and the ∩ operator is used to denote

compatible pairs of strategies.

• σ1 _ σ2 the player plays the strategy σ1 and then after some time (based on

history), switches strategies and plays σ2. The position in time of the strategy

switch is unknown in advance and not fixed.

• (σ1 ∗ σ2) allows the player to choose either strategy σ1 or σ2 at every point of

the game

• ψ?σ based on the history of game play, the player tests if the property ψ holds

and if it holds the player according to σ

These constructs allow the properties of strategies to be specified, resulting in

using the combination of constructs to describe game play. The meaning of [ψ 7→ ak]i

for p ∈ P i is that player i chooses move “a” when it is that player’s turn and p holds.

At positions of the game where it is player i’s move and p does not hold, any enabled

move is allowed to be instead. The construct σ1 + σ2 means that the strategy of

player i conforms to the specification σ1 or σ2, while the construct σ1 · σ2 means the

strategy conforms to specification σ1 and σ2. πι ⇒ σ says that player i sticks to the

specification σ if the history of play reveals all moves made by ι conforms to πι. This

captures the game theoretic view that the actions of players are in responses to the

opponent(s) moves and the play is forced to make a move on the history game play

without knowing the opponent(s) complete strategy.

These constructs are formalized for a game tree T and a node s ∈ T and the

strategy specification σ ∈ Strati(P i). The least subtree of T∫ is defined as: T∫ � σ
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= (Sσ, ⇒σ, s0) which contains the unique path from s0 to s, denoted pss0 . T∫ � σ is

closed under the following conditions:

• ∀ s′ ∈ Sσ such that s ⇒∗σ s′

– s′ is an i node: s′ a=⇒ s′′ and a ∈ σ(s′) ⇔ s′
a=⇒σ s

′′

– s′ is an 6i node: s′ a=⇒ s′′ ⇔ s′
a=⇒σ s

′′

For the game tree T and a node, s ∈ T , let the unique path from s0 to s be pss0

: s0
a=⇒ s1 · · ·

am=⇒ sm = s. Given the strategy specification σ ∈ Strati(P i) and node

s ∈ t, the definition of σ(s) is:

• [ψ 7→ a]i(s) =


{a} if s ∈ W i and pss0 , m |= ψ

σ otherwise

• (σ1 + σ2)(s) = σ1(s) ∪ σ2(s)

• (σ1 · σ2)(s) = σ1(s) ∩ σ2(s)

• (π ⇒ σ)(s) =


σ(s) if ∀ j : 0≤j<m, aj ∈ π(sj)

σ otherwise

Path ps′s : s = s1
a1=⇒ s2 · · ·

am−1===⇒ sm = s′ ∈ T is said to conform to σ if ∀ j : 1 ≤

j < m, aj ∈ σ(sj). Play is said to conform to σ when the path leads to proper play.

The following null is used to represent an empty specification and is defined as:

Definition 32. An empty specification is denoted by nulli , [> 7→ a1] + · · · +

[> 7→ am]

Any strategy for player i conforms to nulli, which is useful for asserting a strategy

exists while the property of the strategy are irrelevant.
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6.3.4 Strategy Specification Syntax.

The logic syntax is given by P and Π:

Definition 33. The strategy logic syntax is given by Π :, p ∈ P | ¬α | α1 ∨ α2

| < a+ > α | < a− > α | �α | (σ)i : c | σ {i β

where c ∈ Σ, σ ∈ Strati(P i), β ∈ Past(P i). Let �α = ¬�¬α, < N+ > α =∨
α∈Σ < a+ > α, [N]α = ¬ < N > ¬α, < P > α = ∨

α∈Σ < a− > α, and [P] =

¬ < P > ¬α. Other standard connectives are used: ∧ (conjunction), ⊃ (if then), and

[a]α.

The formula (σ)i : c means that at any position in the game the player i’s strategy

specification σ suggests the move c can be played at the given position. The formula

σ{i β means that from the current position in the game, there exists a way to follow

player i’s strategy σ where β is ensured to be the outcome.

6.3.5 Semantics.

Extensive form game trees and a valuation function serve as the model for the

logic. This results in a model M , (T , V) where game tree T , (S1, S2, →, s0)

defined from before, and the valuation function V : S → 2P such that the following

is true:

• For i ∈ N, τi ∈ V(s) iff s ∈ S ′

• leaf ∈ V(s) iff moves(s) = ∅

where for a node s, moves(s) = {a|s a=⇒ s′}.

The truth of formula α ∈ Π in the modelM and at position s, denotedM, s |=

α, is defined on the structure of α. Let pss0 : s0
a0=⇒ s1 · · ·

am−1===⇒ sm = s.

• M, s |= p iff p ∈ V(s)

• M, s |= ¬α iff M, s 6|= α
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• M, s |= α1 ∨ α2 iff M, s |= α1 or M, s |= α2

• M, s |= < a+ > α iff ∃s′ ∈ W such that s a−→ s′ and M, s′ |= α

• M, s |= < a− > α iff m > 0, a = am−1 and M, sm−1 |= α

• M, s |= �α iff ∃ j : 0 ≤ j ≤ m such that M, sj |= α

• M, s |= (σ)i : c iff c ∈ σ(s)

• M, s |= σ {i β iff ∀s′inTs � σ, such that s ⇒∗ s′ then M, s′ |= β ∧

(τi ⊃ enabledσ).

where enabledσ ≡
∨
a∈Σ(< a > True ∧ (σ)i : a).

Satisfiability and validity can be defined for a function, α. α is said to be

satisfiable if and only if there exists a model M, and there exists s such that M,

s |= α. α is said to be valid if and only if M, s |= α, ∀M,∀s.

6.4 Trust, Misperception, and Deception

At the foundation of human decision making is trust. When people have trust

in others they are dealing with, they assume more risk or cooperate in the face of

incomplete or imperfect information. This makes trust a central concept in order to

formulate the key idea of deception in a hypergame model.

The concepts of trust and distrust can be found discussed throughout literature

(see [232] or [148]). Using the temporal hypergame model, the concept of trust

is defined within the constrains of the model. Given a formal definition of trust, a

definition of distrust is then constructed. From these two concepts a formal definition

of deception is given.

Recall the temporal hypergame framework presented in this chapter. Given a

temporal hypergame model HT , {GT} (Definition 15), a perceived temporal game

GT , {N,Σ,ΦT ,≤ii∈N} (Definition 16), and the extensive form game tree T associated
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with the game arena ΦT . For two strategies σ1 and σ2 in GT with N = {1, 2}

with the extensive form game tree T , (S,⇒, s0, λ) the concept of trust, distrust,

misperception, and deception is defined.

6.4.1 Trust.

In modeling conflicts and decision-making problems, trust is an important

concept. Trust can determine how players respond to perceived devaitions in the

game, or which strategies the players prefer. Trust is defined in the temporal

hypergame framework by:

Finding 5. Weak Trust - Player 1 has weak trust in Player 2 if at a vertex s′ ∈ Sσ1

∃ s ∈ Sσ1 and a ∈ ΣFull such that s a=⇒ s
′.

Finding 6. Strong Trust - Player 1 has strong trust in Player 2 if ∀ s′ ∈ Sσ1 ∃ s

∈ Sσ1 and a ∈ ΣFull such that s a=⇒ s
′.

The distinction between weak and strong trust is important during decision

making or human interactions. Weak trust (Definition 5) covers the case of when

there is only one vertex in the extensive form game tree where the strategy leads

to expected play/outcome. Strong trust (Definition 6) covers the case of when all

vertices in the extensive form game tree lead to the expected play/outcome for the

selected strategy.

While it is important to trust other players in a game, it is also important to

know which players to distrust. Distrust is defined using the definitions of trust in

Definition 5 and Definition 6.

Finding 7. Weak Distrust - Player 1 has weak distrust in Player 2 if at a vertex

s
′ ∈ Sσ1 @ s ∈ Sσ1 and a ∈ ΣFull such that s a=⇒ s

′.

Finding 8. Strong Distrust - Player 1 has strong distrust in Player 2 if ∀ s′ ∈ Sσ1

@ s ∈ Sσ1 and a ∈ ΣFull such that s a=⇒ s
′.
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Mistrust occurs when a player has distrust (as defined in either Definition 7 or

Definition 7) in the other player. Formally this is defined as:

Finding 9. Mistrust - Player 1 mistrust Player 2 if ∃ s′ ∈ Sσ1 where Player 1

distrusts Player 2.

6.4.2 Misperception.

The concept of misperception is closely related to trust, distrust, and mistrust.

When a player misperceives something, then they recognize it incorrectly in some

way. Misperception is an important concept in hypergames, and is necessary to gain

an advantage. A formal definition of misperception over the temporal hypergame

framework is:

Finding 10. Misperception - Player 2 misperceives the strategy of Player 1 if there

is at least one vertex s′ ∈ Sσ1 ∃ s ∈ Sσ1 and a ∈ ΣFull such that s a=⇒ s
′ so that when

a new strategy σ∗ which is equal to σ1 except that @ s ∈ Sσ1 and a ∈ ΣFull such that

s
a=⇒ s∗ and (σ1, σ2) ≤1 (σ∗, σ2)

6.4.3 Deception.

If a player intentionally takes advantage of a misperception in a game, then the

player is said to deceive the other player(s). Formally deception is defined over the

temporal hypergame model:

Finding 11. Deception - Player 1 (p) deceives Player 2 (q) if for a hypergame H,

the following is true:

• Player 2 trusts Player 1, according to Finding 5 or Finding 6.

• Player 2 misperceives the strategy of Player 1, according to Finding 10.

• If there exists a strategy pair (σp, σq), σp ∈ Σp and σq ∈ Σq where (σp, σq) ∈

N(GT ) and (σp, σq) < SHN(GT ) and (σp∗, σq) ∈ SHN(GT )
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The first condition clearly states that player 2 must trust player 1. The second

condition states that player 1 must have a strategy that is only different in one way

from the expected strategy. The final condition states that the strategy pair with the

deception strategy must be a Nash equilibrium in the hypergame, but not a stable

hyper Nash equilibrium and that the strategy for the deceived player must be a stabel

hyper Nash equilibrium with the strategy that is misperceived.

6.5 Additional Findings on the Temporal Hypergame

Given the Theorem 4 stating that there exists a SPNE in a game with finite

repetitions and the Theorem 10 where there is a hyper Nash equilibrium in every

finite game with mixed strategies. Then it can be concluded:

Finding 12. In every finite temporal hypergame with mixed strategies, there is at

least one SPNE (which may be in the base game).

If a stage game has a Nash equilibrium then the repeated game has a SPNE (in

infinitely repeated games) according to Theorem 8 and Lemma 9.

Finding 13. If a temporal hypergame H at some time x has a Nash equilibrium in

the base game (i.e. stable hyper Nash equilibrium), then the temporal hypergame has

a SPNE.

Given Finding 12 and Finding 13 then the following is true:

Finding 14. In both the infinite and finite temporal hypergame with mixed strategies,

there is at least one SPNE.

According to the one-shot deviation principle (Theorem 6) states that a strategy

is a SPNE if and only if there is no profitable one-shot deviation. The implication of

this applied to hypergames is:
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Finding 15. In a hypergame H, a strategy is a SPNE in the base game iff there is

no profitable one-shot deviation. A one-shot deviation would produce a strategy in the

difference game of hypergame H.

6.6 Summary

This chapter develops and discusses a temporal hypergame framework, repre-

senting a new frontier with hypergames. The temporal hypergame framework started

with the original hypergame model from Bennett and is enhanced with the models

provided by Vane and Gibson. The concepts of trust, misperception, and deception

are given using the constructs of the temporal hypergame framework in symbolic

form. This framework is applied in the next chapter to the Prisoner’s Dilemma and

Chicken (classical game theoretic examples), as well as a more complex SCADA net-

work (attacker/defender) game.
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VII. Temporal Hypergame Cyber Physical System Applications

This chapter presents the application of the temporal hypergame framework to

different hypothetical conflicts. First, an overview on verification and validation for

models is given. Next, a discussion on why the examples where chosen is presented.

The temporal hypergame framework is applied to a classical game theoretic game, an

iterated hypergame, and three cyber physical system examples.

The first application involves the classical game theoretic example of the

Prisoner’s Dilemma. The framework is applied to‘ the Prisoner’s Dilemma in order

to show the framework is valid with classical games. The detailed mathematical

description is included in Appendix C. The example focuses on the repeated (or

iterated) Prisoner’s Dilemma where the same game is played over and over by the

players. This example shows the ability of the temporal hypergame framework

to model the Prisoner’s Dilemma and demonstrate the reasoning concept of the

backwards induction.

In real world players often reason using iterated hypergames. Each hypergame

in the iterated series, has unstable outcomes that are intended to give the player an

advantage in a later iteration [199]. The hypergame is the same game in each iteration,

as is done in the repeated Prisoner’s Dilemma. This is shown in second application,

when the temporal hypergame framework is applied to an iterated hypergame.

The temporal hypergame framework builds on this concept of iteration, but

allows the model to change with time which is more representative of real-world

conflicts. The temporal hypergame framework does not require the hypergame to be

the same game as in the iterative hypergame, instead aspects of the hypergame can

vary from time epoch to time epoch. Aspects that can vary include available actions
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to a player, the way the outcomes are calculated, and the way the player chooses a

strategy.

In this chapter, the complete temporal hypergame framework is applied to one

game theoretic and two additional examples with hypergame properties, in order

to better demonstrate the temporal utility of the framework. By definition of

hypergames, the temporal hypergame framework provides a way to find the strategies

equal to or better than the Nash equilibrium. The examples show that the framework

results in an appropriate result for the hypergame structure.

7.1 Verification and Validation

Models (like the temporal hypergame framework) are built in order to gain

a better understanding of complex systems [185]. A model is a logical structure

used to suggest the progression and conclusion of the represented system over time.

The system complexity, which may have infinite parts and interactions, can make it

difficult to characterize and understand the complete system [209]. The objective of

the model is to reduce the system complexity by identifying aspects of the system

that allow a satisfactory, but not always perfect understanding. While models are not

right or wrong, some may provide more insight into a system than others. Various

models can be compared on the basis of how the model helps in system understanding.

Because a model is based on a few chosen aspects, to fully exercise the model

a system is required to have representative measures for the chosen aspects. If the

system to be modeled does not demonstrate the aspects of interest or only a partial

set of the aspects, then the model may not produce realistic results or may exercise

part of the model, but still give realistic results. The utility of a model is based how

accurately the measures extracted from the model collate to the measures extracted

from the represented system.
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There are two ways to determine the utility of the model with respect to the

system. The first way is to determine if the model implements the assumptions

correctly through model verification [151]. The second, is to determine whether the

assumptions are reasonable for the represented system through model validation[151].

While one way does imply the other, both are commonly used together. The

goal of the verification and validation process is to show the model represents the

system being modeled at a fidelity needed for decision-making [186]. Verification and

validation also show the model is credible at an acceptable level for usage by the

decision-maker.

There are two ways to conduct verification and validation. The first, is through

mathematical proofs that give high fidelity results that the assumptions hold in the

model for given cases. The second, through justification by example gives a lower

fidelity result that the assumptions may hold in the model for the specific case and

are representative of the specific modeled system [318]. This chapter uses justification

by example to validate the utility of the hypergame temporal framework.

When using justification by example, it is not possible to test 100% as testing

every conceivable combination of inputs (game models) is not possible. The structural

properties of the games chosen as inputs to the temporal hypergame framework

determine which aspects of the framework are tested. While not every input can

be tested, a subset of the structural properties can provide a satisfactory level of

confidence that the framework behaves as expected.

A chosen specific game may not have the structural properties that exercise all

aspects of the framework. Normally a game has a subset of properties that can

exercise some partial aspects of the framework. This means more than one game may

be needed to exercise more aspects of the framework to determine if it has correct

behavior.
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In the case of the Prisoner’s Dilemma (discussed in Appendix C), the structural

properties of the game do not allow for detailed hypergame analysis which is a testing

objective. With the Prisoner’s Dilemma, the game is symmetric and does not have

differences in perception required for hypergame analysis. For improved hypergame

analysis, a game should have asymmetric structural properties such as a player with

an unknown action/strategy or misperception about the value or ordering of the

game outcomes. The simple cyber physical system example and the extended cyber

physical system example are designed to exercise the additional structural properties

for improved hypergame analysis.

7.2 Iterated vs. Temporal Hypergames

In game theory, a repeated game (also known as an iterated game [366]) consists

of some number of repetitions of a base game [254]. The base game (also known

as a stage game) remains exactly the same through the repetitions (or time) [294].

This same definition and concept can be applied to hypergames, where the repeated

hypergame does not change over time or from iteration to iteration.

How does an iterated hypergame relate to a temporal hypergame? The idea is

that any iterated hypergame can be represented using a temporal hypergame (shown

in Figure 7.1). In doing this, the temporal hypergame should produce the exact

same result (outcome) as the iterated hypergame, without additional information or

knowledge being incorporated into the temporal model.

The temporal hypergame cannot produce a different result from the iterated

hypergame, by definition of an iterated and temporal hypergame. If different results

were produced then the two methods would not be related as shown in Figure 7.2.

This view is not supported in this research, as this research is based on the relationship

in Figure 7.1.
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Figure 7.1: Iterated and Temporal Hypergame Relationship.

Figure 7.2: Alternative Hypergame Method Relationship.

This is demonstrated in Appendix C, where the iterated (repeated) Prisoner’s

Dilemma results in the same outcome when using the iterated or temporal methods.

The outcome is the same under both methods, and backward induction applies in both

cases. Not every temporal hypergame can be represented as an iterated hypergame.
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7.3 Model Application Steps

There are six basic steps to applying the temporal hypergame framework

presented in Section 6.3 of Chapter 6, as shown in Figure 7.3. The first step,

initial game definition, is where the game structure is defined in terms of players

and actions. The next step, identification of states and transitions, is where the game

progression rules are developed. In the game mapping step, the game is mapped

to the extensive form game tree. Path structuring develops the game model and

allows the simplification of reasoning about paths in the game tree. With the basic

structure, progression, and transition of the game, the next step builds upon the rules

and game constraints in order to define player strategies. Finally, using the constructs

developed in the previous steps the temporal hypergame framework is used to analyze

the game.

Figure 7.3: Temporal Hypergame Framework Process Overview.

7.4 Iterated Attacker-Defender Hypergame Application

Gibson [135] presents a hypergame model of an attacker-defender network game.

The game is based on the original game theoretic model presented by Chen and

Leneutre [72]. A detailed overview is given in Appendix B. The game presented by

Gibson is used here with modified outcomes. The outcomes are modified to allow

manual definition of the game while allowing uncluttered symbolic definitions.

The game is shown in Figure 7.4 in normal form. The defender has four actions:

not defend, defend, provide ruse, and shutdown. The attacker has three actions: not
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attack, attack, and zero-day exploit. The attacker-defender game is also shown in

Figure 7.5 as a game tree in extensive form.

Figure 7.4: Attacker-defender Game Normal Form.

Figure 7.5: Attacker-defender Game Extensive Form.

7.4.1 Initial Game Definition.

To apply Step 1: Initial Game Definition of the temporal hypergame framework

to the information from the network model, it is necessary to create a temporal

hypergame model. Let the temporal hypergame be:

HT
net , {GT

D}
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The perceived game GT
net:

GT
net , (N,ΣFull,ΦT , {�i}i∈N)

Where N = {Attacker (A), Defender (D)} is the set of players. ΣFull is the finite

set of player actions such that ΣFull = ΣA∪ΣD, ΣA = {NotAttack(NA), Attack(AT ),

Zero−DayExploit(ZD)}, and ΣD = {NotDefend(ND), Defend(DE), P rovideRuse(PR),

andShutdown(S)}. In this model the action provide ruse and shutdown is known to

the defender, but not the attacker.

The preference ordering function for the ith player �i = ui(x, y) ≤ ui(x′, y) for i

∈ N. This means for attacker �A indicates the outcome (x,y) is preferred to outcome

(x′, y) if x ≤ x′ ∀(x, y) ∈ W . For defender �D indicates the outcome (x,y) is preferred

to outcome (x, y′) if y ≤ y′ ∀(x, y) ∈ W . Notice the Nash equilibrium concept is

defined in the preference relation, �i, assuming both players are rational.

This model does not use variable payoff functions, so V , {null}. There are also

no constraints to be applied in the game model.

7.4.2 Identification of States and Transitions.

For Step 2: Identification of States and Transitions of the temporal hypergame

framework, it is necessary to define the rules of the game the players must follow and

is derived from the game tree. The game arena is given by:

ΦT
net , (W,−→, w0, β, C, ↪→, β0, C0,Υ,�, γ,V ,χ)

W consists of sixteen game states, including start, DND, DDE, DPR, DS,

DNDANA, DNDAAT , DNDAZD, DDEANA, DDEAAT , DDEAZD, DPRANA, DPRAAT ,

DPRAZD, DSANA, DSAAT , DSAZD. The function −→ defines the game transitions

such that (W x Σ) → W. The possible transitions are:

• start x ND → DND where ND ∈ ΣD
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• start x DE → DDE where DE ∈ ΣD

• start x PR → DPR where PR ∈ ΣD

• start x S → DS where S ∈ ΣD

• DND x NA → DNDANA where NA ∈ ΣA

• DND x AT → DNDAAT where AT ∈ ΣA

• DND x ZD → DNDAZD where ZD ∈ ΣA

• DDE x NA → DDEANA where NA ∈ ΣA

• DDE x AT → DDEAAT where AT ∈ ΣA

• DDE x ZD → DDEAZD where ZD ∈ ΣA

• DPR x NA → DPRANA where NA ∈ ΣA

• DPR x AT → DPRAAT where AT ∈ ΣA

• DPR x ZD → DPRAZD where ZD ∈ ΣA

• DS x NA → DSANA where NA ∈ ΣA

• DS x AT → DSAAT where AT ∈ ΣA

• DS x ZD → DSAZD where ZD ∈ ΣA

• DNDANA → start

• DNDAAT → start

• DNDAZD → start

• DDEANA → start
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• DDEAAT → start

• DDEAZD → start

• DPRANA → start

• DPRAAT → start

• DPRAZD → start

• DSANA → start

• DSAAT → start

• DSAZD → start

The initial state of the game w0, is equal to start ∈ W, where −−−→start =

{DND, DDE, DPR, DS}. The belief context β0 is set to 0.8 (which is selected randomly

for this example), the update function for the belief context ↪→ simply makes no

modification to the belief contexts (i.e. β0 ↪→ βnew implies β0 = βnew). The CMS

C, and the initial value C0 is set to the NEMS value for the hypergame. The fear-of-

being-outguessed Υ, is set to an initial value γ of zero. The update function� maps

γ � Υ = 0. Therefore there is no update. The χ function assigns he player whose

turn it is to the game state w ∈ W where W → N. For example, χ(start) = D, while

χ(DND) = χ(DDE) = χ(DPR) = χ(DS) = A.

7.4.3 Game Mapping.

For Step 3: Game Mapping, an extensive form game tree T is associated with

the network game arena, φTnet. The extensive form game tree is defined as:

T = (S,⇒, s0, λ) (7.1)
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where (S, ⇒) is a countably infinite tree rooted at s0 with edges from Σ. The

nodes of the tree are given by S, where S = {root, DND, DDE, DPR, DS, DNDANA,

DNDAAT , DNDAZD, DDEANA, DDEAAT , DDEAZD, DPRANA, DPRAAT , DPRAZD,

DSANA, DSAAT , DSAZD}. The root of the tree denoted s0, is equal to root ∈ S. The
x=⇒ is the function that moves between nodes of the tree using the edge denoted by x

∈ Σ.

The possible nodes transitions are {root ND==⇒ DND, root DE==⇒ DDE, root PR=⇒ DPR

, root S=⇒ DS where ND, DE, PR, S ∈ σD} ∪ {DND
NA==⇒ DNDANA, DND

AT=⇒ DNDAAT ,

DND
ZD=⇒ DNDAZD, DDE

NA==⇒ DDEANA, DDE
AT=⇒ DDEAAT , DDE

ZD=⇒ DDEAZD, DPR

NA==⇒DPRANA, DPR
AT=⇒DPRAAT , DPR

ZD=⇒DPRAZD DS
NA==⇒DSANA, DS

AT=⇒DSAAT ,

DS
ZD=⇒ DSAZD where NA, AT, ZD ∈ σA}.

The function λ is S → W, where

• λ(s0) = w0

• ∀s, s′ ∈ S, if s a=⇒ s′ then λ(s) a=⇒ λ(s′)

• if λ(s) = w and w a−→ w′ there exists s′ ∈ S s.t. s a=⇒ s′ and λ(s′) = w′

7.4.4 Path Structuring.

For Step 4: Path Structuring, the players individual paths through the game

tree are defined. Theses paths are later used to define the strategies, but are not

required. Defining the paths reduces the amount of notation required for the strategy

definitions. The model for the network temporal hypergame can be represented by

Mnet = (T ,V). The game tree, T is given from the previous game mapping and the

valuation function v is given by:

• V(pint) = {s0}

• V(pdomA) = {DND, DNDAAT} or {DND, DNDAZD} or {DDE, DDEAAT} or

{DDE, DDEAZD}
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• V(pdomDexp) = {DDE}

• V(pworstA) = {DND, DNDANA} or {DDE, DDEANA}

• V(pworstD) = {DND, DNDAAT} or {DND, DNDAZD}

When the hypergame advantageS (defender can Provide Ruse and Shutdown) is

considered, the additional functions are included; while the other functions remain

the same:

• V(pdomDhyp
) = {DPR, DPRAAT}

• V(pworstAhyp
) = {DS, DSAAT} or {DS, DSAZD}

The pdomDhyp
represents the dominant path for the defender from the attacker’s

point-of-view. The attacker has failed to account for the defender’s provide ruse

option. While the pdomDexp represents the dominant path for the defender when the

defender’s advantage (Provide Ruse) is considered. The attacker is unaware of this

option, and therefore assumes pdomDexp is the expected outcome for a rational defender.

7.4.5 Define Player Strategies.

For Step 5: Define Player Strategies, strategies for each player are defined in

terms of the states and transitions, as well as the paths defined previously. In this

game the attacker’s strategy can be defined as:

StratA ≡ ([pint 7→ ND]D ⇒ [pdomDexp 7→ AT ]A ∨ [pdomDexp 7→ ZD]A) ·

([pint 7→ DE]D ⇒ [pdomDexp 7→ AT ]A ∨ [pdomDexp 7→ ZD]A) · ([pint 7→ ND]D ⇒

[pworstAexp 7→ NA]A) · ([pint 7→ DE]D ⇒ [pworstAexp 7→ NA]A)

From the attacker’s perspective, the defender’s strategy is defined as:

StratDA ≡ ([pint 7→ ND]D) · ([pint 7→ DE]D) · ([pint 7→ ND]D ⇒ pdomDexp) ·

([pint 7→ DE]D ⇒ pdomDexp)
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But the defender has two extra actions available (Provide Ruse and Shutdown)

that the attacker is not aware of, so the defender’s strategy can be defined as:

StratD ≡ ([pint 7→ ND]D) · ([pint 7→ DE]D) · ([pint 7→ PR]D · ([pint 7→ S]D) ·

([pint 7→ ND]D ⇒ pdomDexp) · ([pint 7→ DE]D ⇒ pdomDexp) · ([pint 7→ PR]D ⇒

[pdomDhyp
7→ AT ]A) · ([pint 7→ S]D ⇒ [pworstAhyp

7→ AT ]A ∨ [pworstAhyp
7→ ZD]A)

7.4.6 Analyze Model.

For the final Step 6: Analyze Model, the previous definitions are used to logical

analysis the constructed model. From the previous definitions, StratDA {D (pdomDexp

∨ pworstD), which means the defender can either follow the dominant strategy or the

worst case strategy from the view of the attacker. A rational defender is always

assumed to follow the dominant strategy. In this case if the defender plays ”Defend”

then the defender can ensure the worst outcome is avoided:

[turnD 7→ D]D {D ¬pworstD

This represents the result of the game where the defender always desires to

defend. With this, the defender would expect the attacker to reach the expected best

case pexpA. Which means the defender would expect StratA {A pdomA.

The attacker follows [turnA 7→ AT ]A ∧ [turnA 7→ ZD]A. This allows the attacker

to achieve the best outcome, while allowing the defender to follow their perceived

dominant strategy.

For the defender the solution is always to use the ”Defend” strategy:

[turnD 7→ D]D {D ¬pworstD

The attacker’s strategy is to always choose the Attack (AT) or Zero-Day (ZD).

[turnA 7→ AT ]A ∧ [turnA 7→ ZD]A {A pdomA
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Up to this point the analysis has focused on the solution to the game without

considering the hypergame advantage for the defender. From the previous definitions,

StratD {D (pdomDhyp
∨ pworstD), which means the defender can either follow the

hypergame strategy or the worst case strategy. It is assumed that a rational defender

always plays to the hypergame strategy, since it is dominant. In this case, if

the defender plays ”Defend” or the hidden hypergame strategies Provide Ruse and

Shutdown, then the defender can ensure the worst outcome is avoided:

[turnD 7→ ND]D {D ¬pworstD

This shows the hypergame result of the game where the defender would expect

the defender to reach the expected worst case pworstD .

The attacker still follows [turnA 7→ AT ]A ∧ [turnA 7→ ZD]A. This allows the

attacker to achieve their perceived best outcome, which is StratA {A pdomA from the

previous analysis. Because of the hypergame, the attacker does not end up in the

dominant or worst outcome StratA ¬ {A pworstAhyp
∨ pdomA.

Since the solution to the hypergame is for the defender to play Provide Ruse

and the attacker to play Attack or Zero-Day, the defender can guarantee the worst

possible outcome is avoided.

[turnD 7→ PR]D {D ¬pworstD ∧ (pdomDhyp

The attacker’s strategy is to always play the action or Attack or Zero-Day.

[turnA 7→ AT ]A ∧ [turnA 7→ ZD]A

The temporal hypergame analysis shows that the defender can improve upon

their outcome by leveraging the attacker’s misperception. It also shows that the

defender can guarantee the attacker does not reach the dominant (best case) outcome.
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7.5 Cyber Physical Security Application

Cyber Physical Systems (CPS) are physical entities controlled and monitored by

computer-based algorithms. A CPS is usually designed as a network of interacting

systems with inputs and outputs as opposed to standalone devices. CPS is similar in

architecture to the Internet of Things (IoT), but require higher coordination between

physical and computational elements. An overview of CPS is provided in Figure 7.6.

The specific application focus of this research (shown in Figure 7.7) is on the cyber

security of CPSs.

Figure 7.6: Overview of Cyber Physical Systems [66].

171



Figure 7.7: Focus Area of Cyber Physical System Application [66].

These types of systems include those found in avionics, ships, satellites, cars and

Supervisory Control and Data Acquisition) SCADA systems. Reports on exploits such

as Stuxnet [323] and APT28 [99] are appearing more frequently and are becoming a

growing concern (see Section 1.1.2 in Chapter 1 for a more detailed listing of exploits).

As CPSs begin to depend more on meta-level information infrastructures and as this

IP- based technology begins to be integrated into these systems, critical CPSs are

becoming a larger part of the already established vulnerability target. This puts the

mission assurance of these systems at risk with potentially higher stakes than losing

data or intellectual property. A Supervisory Control and Data Acquisition (SCADA)

system is an example of a Cyber Physical Systems (CPS) and is a type of Industrial

Control System (ICS). SCADA systems monitor and control industrial processes that

exist in the physical world.
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7.5.1 Cyber Physical SCADA Security Hypergame Example - Game

Theoretic.

Hewett et al. [165, 307] present a game theoretic model for cyber-security analysis

of SCADA systems. The game is based on the classic attacker-defender game. The

authors present the game in extensive form as shown in Figure 7.8. The defender has

two actions: defend the SCADA network or not defend. The attacker has five actions:

sybil (identity spoofing), node compromise (control of a sensor node), eavesdropping

(traffic sniffing), data injection (datastore or communication channels), or no attack.

Figure 7.8: SCADA Sensor Network Game [165, 307].

The unique property of the game is that it is not symmetric. Depending on

whether the attacker chooses sybil or node compromise as a first action, leads to

the set of actions that are available to the attacker in the second round. If the

attacker chooses sybil then in the next round the attacker chooses from the actions of
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eavesdropping or data injection. For node compromise, the attacker chooses from the

actions of eavesdropping or data injection. The authors use variables in the payoff

functions. The payoff function is denoted Ud(p, a), of player p at a decision node

of depth d as a result of action a. Action a can be either taken by player p or the

opponent. The payoff function (utility) is calculated by :

Ud(p, a) = Ud−1(p, a′) +B(p, a, d) (7.2)

B(p, a, d) denotes the behavior of the impact of the action and a
′ denotes the

action of p’s opponent. At the root of the game tree (i.e. start of the game) there

are no previous payoffs, so the initial payoff is U0(p, nil) = (0, 0) where nil is no

action. B(p, a, d) is the behavior of the impact of the action, as shown in Table 7.1.

It depends on the action a, the player p, and the depth d of the game tree as an

indicator of the game’s advancement.

Table 7.1: SCADA Behavior of the Impact [165, 307].

B(p, a, d) a is A’s action a is D’s action

p = A (Attacker) d ∗ Impact(a) 0

p = D (Defender) −Impact(a)d Impact(a)

The impact function shown in Table 7.1, determines the impact of confidentiality,

integrity, and availability. Let C(a), I(a), and A(a) be the confidentiality, integrity,

and availability with the corresponding weights wC , wI , and wA of action a. The

function is defined as:

Impact(a) = wCC(a) + wII(a) + wAA(a) (7.3)
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The weight sum to 1 and are fixed at wC = 0.1, wI = 0.6, and wA = 0.3. The

impact function is calculated according to Table 7.2. Not defend and not attack have

no impact on the model and are excluded from the table. In Table 7.2, the value 1 is

considered low, 4 is moderate, and 8 is high, in terms of impact.

Table 7.2: SCADA Model Impact Function [165, 307].

Description C(a) I(a) A(a) Impact(a)

Defend 6 6 1 4.5

Sybil 6 1 1 1.5

Node Compromise 6 1 1 1.5

Eavesdropping 8 1 1 1.7

Data Injection 1 8 6 6.7

7.5.1.1 Initial Game Definition.

To apply Step 1: Initial Game Definition of the temporal hypergame framework

to the information from the SCADA model, it is necessary to create a temporal

hypergame model. Let the temporal hypergame be:

HT
SCADA , {GT

D}

The perceived game GT
SCADA is:

GT
SCADA , (N,ΣFull,ΦT , {�i}i∈N)

Where N = {Attacker (A), Defender (D)} is the set of players. ΣFull is the finite

set of player actions such that ΣFull = ΣA∪ΣD, ΣA = {Sybil(Sy), NodeCompromise(NC),

Eavesdropping(E), DataInjection(DI), NotAttack(nil)}, and ΣD = {Defend(D),

NotDefend(nil)}.
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The preference ordering function for the ith player �i = ui(x, y) ≤ ui(x′, y) for

i ∈ N. This means for the attacker �A indicates the outcome (x,y) is preferred to

outcome (x′, y) if x ≤ x′ ∀(x, y) ∈ W . For the defender �D indicates the outcome

(x,y) is preferred to outcome (x, y′) if y ≤ y′ ∀(x, y) ∈ W . The Nash equilibrium

concept is encoded in the preference relation, �i, assuming both players are rational.

The variable payoff function is denoted by:

V , {ω, ωinit, ψ, δ}

The payoff function variables are given by ω = {wC , wI , wA, d, Impact(a)}. The

initial values ωinit, are set to 0 except for wC = 0.1, wI = 0.6, and wA = 0.3. The

function ψ works as follows:

• If variable Impact(a)

– If a = Defend, then Impact = 4.5

– if a = Sybil, then Impact = 1.5

– if a = Node Compromise, then Impact = 1.5

– if a = Eavesdropping, then Impact = 1.7

– if a = Data Injection, then Impact = 6.7

• if variable d, then d = d + 1

With the proposed model there are no constraints to be applied.

7.5.1.2 Identification of States and Transitions.

For Step 2: Identification of States and Transitions of the temporal hypergame

framework, it is necessary to define the rules of the game the players must follow and

is derived from the game tree. The game arena is given by:

ΦT
SCADA , (W,−→, w0, β, C, ↪→, β0, C0,Υ,�, γ,V ,χ)
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W consists of sixteen game states, including start, ASy, ANC , ASyDD, ASyDnil,

ANCDD, ANCDnil, AISEDD, ASyDDAE, ASyDDAnil, ASyDnilAE, ASyDnilADI ,

ASyDDAE, ASyDDADI , ASyDDAnil, ANCDnilAE, and ANCDnilADI . The function

−→ defines the game transitions such that (W x Σ) → W. The possible transitions

are:

• start x Sy → ASy where Sy ∈ ΣA

• start x NC → ANC where NC ∈ ΣA

• ASy x D → ASyDD where D ∈ ΣD

• ASy x nil → ASyDnil where nil ∈ ΣD

• ANC x D → ANCDD where D ∈ ΣD

• ANC x nil → ANCDnil where nil ∈ ΣD

• ASyDD x E → ASyDDAE where E ∈ ΣA

• ASyDD x nil → ASyDDAnil where nil ∈ ΣA

• ASyDnil x E → ASyDnilAE where E ∈ ΣA

• ASyDnil x DI → ASyDnilADI where DI ∈ ΣA

• ANCDD x E → ASyDDAE where E ∈ ΣA

• ANCDD x DI → ASyDDADI where DI ∈ ΣA

• ANCDD x nil → ASyDDAnil where nil ∈ ΣA

• ANCDnil x E → ANCDnilAE where E ∈ ΣA

• ANCDnil x DI → ANCDnilADI where DI ∈ ΣA
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The initial state of the game w0, is equal to start ∈ W, where −−−→start =

{ASy, ANC , AISE}. The belief context β0 is set to 0.8 (which is randomly chosen

for this example), the update function for the belief context ↪→ simply makes no

modification to the belief contexts (i.e. β0 ↪→ βnew implies β0 = βnew). The CMS

C, and the initial value C0 is set to the NEMS value for the hypergame. The fear-of-

being-outguessed Υ, is set to an initial value γ of zero. The update function� maps

γ � Υ = 0. Therefore there is no update. The χ function assigns the player whose

turn it is to the game state w ∈ W where W → N. For example, χ(start) = A, while

χ(AC) = χ(AD) = D.

7.5.1.3 Game Mapping.

For Step 3: Game Mapping, an extensive form game tree T is associated with

the SCADA security game arena, φTSCADA. The extensive form game tree is defined

as:

T = (S,⇒, s0, λ)

where (S, ⇒) is a countably infinite tree rooted at s0 with edges from Σ. The

nodes of the tree are given by S, where S = {root, ASy, ANC , ASyDD, ASyDnil,

ANCDD, ANCDnil, ASyDDAE, ASyDDAnil, ASyDnilAE, ASyDnilADI , ASyDDAE,

ASyDDADI , ASyDDAnil, ANCDnilAE, and ANCDnilADI}. The root of the tree

denoted s0, is equal to root ∈ S. The x=⇒ is the function that moves between nodes of

the tree using the edge denoted by x ∈ Σ.

The possible nodes transitions are {root Sybil==⇒ ASy, root NodeCompromise==========⇒ ANC

where Sybil, Node Compromise ∈ σA} ∪ {ASy
D=⇒ ASyDD, ASy

nil=⇒ ASyDnil, ANC
D=⇒

ANCDD, ANC
nil=⇒ ANCDnil where D, nil ∈ σD} ∪ {ASyDD

E=⇒ ASyDDAE, ASyDD
nil=⇒

ASyDDAnil, ASyDnil
E=⇒ ASyDnilAE, ASyDnil

DI=⇒ ASyDnilADI , ANCDD
E=⇒ ANCDDAE,

ANCDD
DI=⇒ ANCDDADI , ANCDD

nil=⇒ ANCDDAnil, ANCDnil
E=⇒ ANCDnilAE, ANCDnil

DI=⇒ ANCDnilADI where E, DI, nil ∈ σA}.
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The function λ is S → W, where

• λ(s0) = w0

• ∀s, s′ ∈ S, if s a=⇒ s′ then λ(s) a=⇒ λ(s′)

• if λ(s) = w and w a−→ w′ there exists s′ ∈ S s.t. s a=⇒ s′ and λ(s′) = w′

7.5.1.4 Path Structuring.

For Step 4: Path Structuring, the players individual paths through the game

tree are defined. Theses paths are later used to define the strategies, but are

not required. Defining the paths reduces the amount of notation required for the

strategy definitions. The model for the SCADA security temporal hypergame can be

represented by MSCADA = (T ,V). The game tree, T is given from the previous game

mapping and the valuation function V is given by:

• V(pint) = {s0}

• V(pdom) = {ASy, ASyDDAE}

• V(pworstA) = {ANC , ANCDD}

• V(pworstD) = {ANC , ANCDnil} or {ASy, ASyDnil}

7.5.1.5 Define Player Strategies.

For Step 5: Define Player Strategies, strategies for each player are defined in

terms of the states and transitions, as well as the paths defined previously. In this

game the Attacker’s strategy can be defined as:

StratA ≡ ([pint 7→ Sy]A) · ([pint 7→ NC]A) · ([pdom 7→ D]D ⇒ [pmaxA
7→ E]A) ·

([pdom 7→ nil]D ⇒ [pmaxA
7→ DI]A)

The Defender’s strategy can be defined as:
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StratD ≡ ([pint 7→ Sy]A ⇒ [pdom 7→ D]D) · ([pint 7→ NC]A ⇒ [pdom 7→ D]D) ·

([pint 7→ Sy]A ⇒ [pworstD 7→ nil]D) · ([pint 7→ NC]A ⇒ [pworstD 7→ nil]D)

7.5.1.6 Analyze Model.

For the final Step 6: Analyze Model, the previous definitions are used to logical

analysis the constructed model. From the previous definitions, StratD {D (pdomD

∨ pworstD), which means the defender can either follow the dominate strategy or the

worst case strategy. If the defender plays “Defend” then the defender can ensure the

worst outcome is avoided:

[turnD 7→ D]D {D ¬pworstD

This indicates the standard result of the game where the defender always desires

to defend. With this, the defender would expect the attacker to reach the expected

best case pexpA. Which means the defender expects the attacker to follow StratA {A

pexpA.

For the defender the strategy is to always defend:

[turnD 7→ D]D {D ¬pworstD

7.5.2 Cyber Physical SCADA Security Temporal Hypergame Ex-

ample - Attacker View.

This section extends the previous game theoretic SCADA security example

with additional actions that can lead to misperceptions, in order to validate more

of the temporal hypergame framework. This example is designed to show how

misperceptions can lead to different results based on the view of the attacker. The

payoff function is denoted Ud(p, a), of player p at a decision node of depth d as a

result of action a. Action a can be either taken by player p or the opponent. The

payoff function (utility) is calculated by :
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Ud(p, a) = Ud−1(p, a′) +B(p, a, d) (7.4)

B(p, a, d) denotes the behavior of the impact of the action and a
′ denotes the

action of p’s opponent. At the root of the game tree (i.e. start of the game) there

are no previous payoffs, so the initial payoff is U0(p, nil) = (0, 0) where nil is no

action. B(p, a, d) is the behavior of the impact of the action, as shown in Table 7.3.

It depends on the action a, the player p, and the depth d of the game tree as an

indicator of the game’s advancement.

Table 7.3: SCADA Behavior of the Impact [165, 307].

B(p, a, d) a is A’s action a is D’s action

p = A (Attacker) d ∗ Impact(a) 0

p = D (Defender) −Impact(a)d Impact(a)

The impact function shown in Table 7.1, determines the impact of confidentiality,

integrity, and availability. Let C(a), I(a), and A(a) be the confidentiality, integrity,

and availability with the corresponding weights wC , wI , and wA of action a. The

function is defined as:

Impact(a) = wCC(a) + wII(a) + wAA(a) (7.5)

In order to make the game more interesting for hypergame modeling, the SCADA

impact function is expanded by adding two new actions - infect support equipment

and ruin/hide. The updated impact function is shown in Table 7.4. The infect support

equipment action is only available to the attacker in the first round (the attacker’s

initial decision). The ruin/hide action is only available to the attacker if the attacker

chose infect support equipment in the first round. The weight sum to 1 and are fixed
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at wC = 0.1, wI = 0.6, and wA = 0.3. Not defend and not attack have no impact on

the model and are excluded from the table. In Table 7.4, the value 1 is considered

low, 4 is moderate, and 8 is high, in terms of impact.

Table 7.4: Updated SCADA Model Impact Function.

Description C(a) I(a) A(a) Impact(a)

Defend 6 6 1 4.5

Sybil 6 1 1 1.5

Node Compromise 6 1 1 1.5

Eavesdropping 8 1 1 1.7

Data Injection 1 8 6 6.7

Infect Support Equipment 6 3 3 3.3

Ruin/Hide 2 5 3 4.1

The simple expanded SCADA sensor network game is shown in Figure 7.9.

This shows the addition of the extra Infect Support Equipment (ISE) option for

the attacker in the first round of play.

7.5.2.1 Initial Game Definition.

To apply Step 1: Initial Game Definition of the temporal hypergame framework

to the information from the SCADA model, it is necessary to create a temporal

hypergame model. Let the temporal hypergame be:

HT
SCADA , {GT

D}

The perceived game GT
SCADA is:

GT
SCADA , (N,ΣFull,ΦT , {�i}i∈N)
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Figure 7.9: Expanded SCADA Sensor Network Game.

Where N = {Attacker (A), Defender (D)} is the set of players. ΣFull is the finite

set of player actions such that ΣFull = ΣA∪ΣD, ΣA = {Sybil(Sy), NodeCompromise(NC),

Eavesdropping(E), DataInjection(DI), NotAttack(nil), InfectSupportEquipment(ISE),

Ruin/Hide(RH)}, and ΣD = {Defend(D), NotDefend(nil)}.

The preference ordering function for the ith player �i = ui(x, y) ≤ ui(x′, y) for

i ∈ N. This means for the attacker �A indicates the outcome (x,y) is preferred to

outcome (x′, y) if x ≤ x′ ∀(x, y) ∈ W . For the defender �D indicates the outcome

(x,y) is preferred to outcome (x, y′) if y ≤ y′ ∀(x, y) ∈ W . The Nash equilibrium

concept is encoded in the preference relation, �i, assuming both players are rational.

The variable payoff function is denoted by:

V , {ω, ωinit, ψ, δ}

The payoff function variables are given by ω = {wC , wI , wA, d, Impact(a)}. The

initial values ωinit, are set to 0 except for wC = 0.1, wI = 0.6, and wA = 0.3. The

function ψ works as follows:
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• If variable Impact(a)

– If a = Defend, then Impact = 4.5

– if a = Sybil, then Impact = 1.5

– if a = Node Compromise, then Impact = 1.5

– if a = Eavesdropping, then Impact = 1.7

– if a = Data Injection, then Impact = 6.7

– if a = Infect Support Equipment, then Impact = 3.3

– if a = Ruin/Hide, then Impact = 4.1

• if variable d, then d = d + 1

With the proposed model there are no constraints to be applied.

7.5.2.2 Identification of States and Transitions.

For Step 2: Identification of States and Transitions of the temporal hypergame

framework, it is necessary to define the rules of the game the players must follow and

is derived from the game tree. The game arena is given by:

ΦT
SCADA , (W,−→, w0, β, C, ↪→, β0, C0,Υ,�, γ,V ,χ)

W consists of sixteen game states, including start, ASy, ANC , AISE, ASyDD,

ASyDnil, ANCDD, ANCDnil, AISEDD, AISEDnil, ASyDDAE, ASyDDAnil, ASyDnilAE,

ASyDnilADI , ASyDDAE, ASyDDADI , ASyDDAnil, ANCDnilAE, ANCDnilADI , AISEDDARH ,

and AISEDNDARH . The function −→ defines the game transitions such that (W x

Σ) → W. The possible transitions are:

• start x Sy → ASy where Sy ∈ ΣA

• start x NC → ANC where NC ∈ ΣA
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• start x ISE → AISE where ISE ∈ ΣA

• ASy x D → ASyDD where D ∈ ΣD

• ASy x nil → ASyDnil where nil ∈ ΣD

• ANC x D → ANCDD where D ∈ ΣD

• ANC x nil → ANCDnil where nil ∈ ΣD

• AISE x D → AISEDD where D ∈ ΣD

• AISE x nil → AISEDnil where nil ∈ ΣD

• ASyDD x E → ASyDDAE where E ∈ ΣA

• ASyDD x nil → ASyDDAnil where nil ∈ ΣA

• ASyDnil x E → ASyDnilAE where E ∈ ΣA

• ASyDnil x DI → ASyDnilADI where DI ∈ ΣA

• ANCDD x E → ASyDDAE where E ∈ ΣA

• ANCDD x DI → ASyDDADI where DI ∈ ΣA

• ANCDD x nil → ASyDDAnil where nil ∈ ΣA

• ANCDnil x E → ANCDnilAE where E ∈ ΣA

• ANCDnil x DI → ANCDnilADI where DI ∈ ΣA

• AISEDD x RH → AISEDDARH where RH ∈ ΣA

• AISEDnil x RH → AISEDnilARH where RH ∈ ΣA
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The initial state of the game w0, is equal to start ∈ W, where −−−→start =

{ASy, ANC , AISE}. The belief context β0 is set to 0.8 (which is randomly chosen

for this example), the update function for the belief context ↪→ simply makes no

modification to the belief contexts (i.e. β0 ↪→ βnew implies β0 = βnew). The CMS

C, and the initial value C0 is set to the NEMS value for the hypergame. The fear-of-

being-outguessed Υ, is set to an initial value γ of zero. The update function� maps

γ � Υ = 0. Therefore there is no update. The χ function assigns the player whose

turn it is to the game state w ∈ W where W → N. For example, χ(start) = A, while

χ(AC) = χ(AD) = D.

7.5.2.3 Game Mapping.

For Step 3: Game Mapping, an extensive form game tree T is associated with

the SCADA security game arena, φTSCADA. The extensive form game tree is defined

as:

T = (S,⇒, s0, λ)

where (S, ⇒) is a countably infinite tree rooted at s0 with edges from Σ. The

nodes of the tree are given by S, where S = {root, ASy, ANC , ASyDD, ASyDnil,

ANCDD, ANCDnil, ASyDDAE, ASyDDAnil, ASyDnilAE, ASyDnilADI , ASyDDAE,

ASyDDADI , ASyDDAnil, ANCDnilAE, and ANCDnilADI}. The root of the tree

denoted s0, is equal to root ∈ S. The x=⇒ is the function that moves between nodes of

the tree using the edge denoted by x ∈ Σ.

The possible nodes transitions are {root Sybil==⇒ ASy, root NodeCompromise==========⇒ ANC ,

root ISE==⇒ AISE where Sybil, Node Compromise, ISE ∈ σA} ∪ {ASy
D=⇒ ASyDD,

ASy
nil=⇒ ASyDnil, ANC

D=⇒ ANCDD, ANC
nil=⇒ ANCDnil, AISE

nil=⇒ AISEDnil, AISE
D=⇒ AISEDD where D, nil ∈ σD} ∪ {ASyDD

E=⇒ ASyDDAE, ASyDD
nil=⇒ ASyDDAnil,

ASyDnil
E=⇒ ASyDnilAE, ASyDnil

DI=⇒ ASyDnilADI , ANCDD
E=⇒ ANCDDAE, ANCDD

DI=⇒ ANCDDADI , ANCDD
nil=⇒ ANCDDAnil, ANCDnil

E=⇒ ANCDnilAE, ANCDnil
DI=⇒
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ANCDnilADI , AISEDD
RH==⇒ AISEDDARH , AISEDnil

RH==⇒ AISEDnilARH where E, DI,

nil, RH ∈ σA}.

The function λ is S → W, where

• λ(s0) = w0

• ∀s, s′ ∈ S, if s a=⇒ s′ then λ(s) a=⇒ λ(s′)

• if λ(s) = w and w a−→ w′ there exists s′ ∈ S s.t. s a=⇒ s′ and λ(s′) = w′

7.5.2.4 Path Structuring.

For Step 4: Path Structuring, the players individual paths through the game

tree are defined. Theses paths are later used to define the strategies, but are

not required. Defining the paths reduces the amount of notation required for the

strategy definitions. The model for the SCADA security temporal hypergame can be

represented by MSCADA = (T ,V). The game tree, T is given from the previous game

mapping and the valuation function V is given by:

• V(pint) = {s0}

• V(pdomD) = {ASy, ASyDDAE}

• V(pworstA) = {ANC , ANCDD}

• V(pworstD) = {ANC , ANCDnil} or {ASy, ASyDnil}

• V(pexpA) = {ASy, ASyDDADI}

When the hypergame is considered, the additional valuation function is included:

• V(pdomA) = {AISE, AISEDD} or {AISE, AISEDnil}
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7.5.2.5 Define Player Strategies.

For Step 5: Define Player Strategies, strategies for each player are defined in

terms of the states and transitions, as well as the paths defined previously. In this

game the Attacker’s strategy can be defined as:

StratA ≡ ([pint 7→ Sy]A) · ([pint 7→ NC]A) · ([pint 7→ ISE]A) · ([pdomD 7→ D]D ⇒

[pmaxA
7→ E]A) · ([pdomD 7→ nil]D ⇒ [pmaxA

7→ DI]A) · ([pdomD 7→ D]D ⇒

[pdomA 7→ RH]A) · ([pdomD 7→ nil]D ⇒ [pdomA 7→ RH]A) · ([ � [turnA 7→ Sy]A ⇒

[turnA 7→ E]A ∨ [turnA 7→ DI]A) ([ � [turnA 7→ NC]A ⇒ [turnA 7→ E]A ∨

[turnA 7→ DI]A) · ([ � [turnA 7→ ISE]A ⇒ [turnA 7→ RH]A)

The Defender’s strategy can be defined as:

StratD ≡ ([pint 7→ Sy]A ⇒ [pdomD 7→ D]D) · ([pint 7→ NC]A ⇒ [pdomD 7→ D]D) ·

([pint 7→ Sy]A ⇒ [pworstD 7→ nil]D) · ([pint 7→ NC]A ⇒ [pworstD 7→ nil]D)

7.5.2.6 Analyze Model.

For the final Step 6: Analyze Model, the previous definitions are used to logical

analysis the constructed model. From the previous definitions, StratD {D (pdomD

∨ pworstD), which means the defender can either follow the dominate strategy or the

worst case strategy. If the defender plays “Defend” then the defender can ensure the

worst outcome is avoided:

[turnD 7→ D]D {D ¬pworstD

This indicates the standard result of the game where the defender always desires

to defend. With this, the defender would expect the attacker to reach the expected

best case pexpA. Which means the defender expects StratA {A pexpA. Since there is

a hypergame, the strategy is really StratA {A pdomA.
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The attacker follows ¬ISE?[turnA 7→ ISE]A ∧ ISE?[turnA 7→ ISE]A. This

allows the attacker to achieve the best outcome, while allowing the defender to follow

their perceived dominant strategy.

For the defender the strategy is to always defend:

[turnD 7→ D]D {D ¬pworstD

For the attacker the strategy is to play the hidden hypergame strategy of always

choosing the ISE in the first round and then the RH action in the second round.

¬ISE?[turnA 7→ ISE]A ∧ ISE?[turnA 7→ ISE]A {A pexpA

7.5.3 Cyber Physical SCADA Security Temporal Hypergame Ex-

ample - Defender View.

This section extends the previous simple SCADA security example with

additional actions that can lead to misperceptions, in order to validate more

of the temporal hypergame framework. This example is designed to show how

misperceptions can lead to different results based on the view of the defender. The

payoff function is denoted Ud(p, a), of player p at a decision node of depth d as a

result of action a. Action a can be either taken by player p or the opponent. The

payoff function (utility) is calculated by:

Ud(p, a) = Ud−1(p, a′) +B(p, a, d)

B(p, a, d) denotes the behavior of the impact of the action and a
′ denotes the

action of p’s opponent. At the root of the game tree (i.e. start of the game) there

are no previous payoffs, so the initial payoff is U0(p, nil) = (0, 0) where nil is no

action. B(p, a, d) is the behavior of the impact of the action, as shown in Table 7.5.

It depends on the action a, the player p, and the depth d of the game tree (shown in

Figure 7.10) as an indicator of the game’s advancement.
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Table 7.5: SCADA Behavior of the Impact.

B(p, a, d) a is A’s action a is D’s action

p = A (Attacker) d ∗ Impact(a) 0

p = D (Defender) −Impact(a)d Impact(a)

The impact function shown in Table 7.5, determines the impact of confidentiality,

integrity, and availability. Let C(a), I(a), and A(a) be the confidentiality, integrity,

and availability with the corresponding weights wC , wI , and wA of action a. The

function is then defined as:

Impact(a) = wCC(a) + wII(a) + wAA(a)

The weight sum to 1 and are fixed at wC = 0.1, wI = 0.6, and wA = 0.3. The

impact function is calculated according to Table 7.6. Not defend and not attack have

no impact on the model and are excluded from the table. In Table 7.6, the value 1 is

considered low, 4 is moderate, and 8 is high, in terms of impact. The SCADA impact

function is expanded by adding four new actions - virus, ruin, hide, and disconnect.

The virus action is only available to the attacker in the first round (the attacker’s

initial decision). The ruin or hide action is only available to the attacker if the

attacker chose infect support equipment in the first round. The disconnect action is

only available to the defender in the first round, after that it is not available. The

virus action represents a cyber weapon that may be used in a future conflict. The

defenders option to disconnect represents a third world country, such as one in Africa,

that may have limited connectivity to the outside world and therefore have limited

infection vectors.
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Table 7.6: SCADA Model Impact Function.

Description C(a) I(a) A(a) Impact(a)

Defend 6 6 1 4.5

Disconnect 8 8 8 8.0

Sybil 6 1 1 1.5

Node Compromise 6 1 1 1.5

Eavesdropping 8 1 1 1.7

Data Injection 1 8 6 6.7

Virus 6 3 3 3.3

Ruin 2 8 8 7.4

Hide 4 0 0 0.4

The extended SCADA sensor nework game is shown in Figure 7.10. This game

tree shows the addition of the additional actions for the attacker and defender in their

respective rounds of play.

7.5.3.1 Initial Game Definition.

To apply Step 1: Initial Game Definition of the temporal hypergame framework

to the information from the SCADA model, it is necessary to create a temporal

hypergame model. Let the temporal hypergame be:

HT
SCADA , {GT

D}

The perceived game GT
SCADA:

GT
SCADA , (N,ΣFull,ΦT , {�i}i∈N)

Where N = {Attacker (A), Defender (D)} is the set of players. ΣFull is the finite

set of player actions such that ΣFull = ΣA∪ΣD, ΣA = {Sybil(Sy), NodeCompromise(NC),
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Eavesdropping(E), DataInjection(DI), NotAttack(nil), V irus(V ), Ruin(R), Hide(H)},

and ΣD = {Defend(D), NotDefend(nil), Diconnect(DC)}. In this model the action

virus is known to the defender, but the action disconnect is not known to the attacker.

The preference ordering function for the ith player �i = ui(x, y) ≤ ui(x′, y) for i

∈ N. This means for attacker �A indicates the outcome (x,y) is preferred to outcome

(x′, y) if x ≤ x′ ∀(x, y) ∈ W . For defender �D indicates the outcome (x,y) is preferred

to outcome (x, y′) if y ≤ y′ ∀(x, y) ∈ W . Notice the Nash equilibrium concept is

defined in the preference relation, �i, assuming both players are rational.

The variable payoff function is denoted by:

V , {ω, ωinit, ψ, δ}

The payoff function variables are given by ω = {wC , wI , wA, d, Impact(a)}. The

initial values ωinit, are set to 0 except for wC = 0.1, wI = 0.6, and wA = 0.3. The

function ψ works as follows:

• If variable Impact(a)

– If a = Defend, then Impact = 4.5

– If a = Disconnect, then Impact = 8.0

– if a = Sybil, then Impact = 1.5

– if a = Node Compromise, then Impact = 1.5

– if a = Eavesdropping, then Impact = 1.7

– if a = Data Injection, then Impact = 6.7

– if a = Infect Support Equipment, then Impact = 3.3

– if a = Ruin, then Impact = 4.1

– if a = Hide, then Impact = 0.4
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• if variable d, then d = d + 1

With the proposed model there are no constraints to be applied.

7.5.3.2 Identification of States and Transitions.

For Step 2: Identification of States and Transitions of the temporal hypergame

framework, it is necessary to define the rules of the game the players must follow and

is derived from the game tree. The game arena is given by:

ΦT
SCADA , (W,−→, w0, β, C, ↪→, β0, C0,Υ,�, γ,V ,χ)

W consists of twenty-nine game states, including start, ASy, ANC , AV , ASyDD,

ASyDnil, ASyDDC , ANCDD, ANCDnil, ANCDDC , AVDD, AVDnil, AVDDC , ASyDDADI ,

ASyDDAE, ASyDnilADI , ASyDnilAE, ASyDDCADI , ASyDDCAE, ANCDnilADI , ANCDnilAE,

ANCDDCADI , ANCDDCAE, AVDDAR, AVDDAH , AVDnilAR, AVDnilAH , AVDDCAR,

AVDDCAH . The function −→ defines the game transitions such that (W x Σ)→W.

The possible transitions are:

• start x Sy → ASy where Sy ∈ ΣA

• start x NC → ANC where NC ∈ ΣA

• start x V → AV where V ∈ ΣA

• ASy x D → ASyDD where D ∈ ΣD

• ASy x nil → ASyDnil where nil ∈ ΣD

• ASy x DC → ASyDDC where DC ∈ ΣD

• ANC x D → ANCDD where D ∈ ΣD

• ANC x nil → ANCDnil where nil ∈ ΣD
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• ANC x DC → ANCDDC where DC ∈ ΣD

• AV x D → AVDD where D ∈ ΣD

• AV x nil → AVDnil where nil ∈ ΣD

• AV x DC → AVDDC where DC ∈ ΣD

• ASyDD x E → ASyDDAE where E ∈ ΣA

• ASyDD x DI → ASyDDADI where DI ∈ ΣA

• ASyDnil x E → ASyDnilAE where E ∈ ΣA

• ASyDnil x DI → ASyDnilADI where DI ∈ ΣA

• ASyDDC x E → ASyDDCAE where E ∈ ΣA

• ASyDDC x DI → ASyDDCADI where DI ∈ ΣA

• ANCDD x E → ASyDDAE where E ∈ ΣA

• ANCDD x DI → ASyDDADI where DI ∈ ΣA

• ANCDnil x E → ANCDnilAE where E ∈ ΣA

• ANCDnil x DI → ANCDnilADI where DI ∈ ΣA

• ANCDDC x E → ANCDDCAE where E ∈ ΣA

• ANCDDC x DI → ANCDDCADI where DI ∈ ΣA

• AVDD x R → AVDDAR where R ∈ ΣA

• AVDD x H → AVDDAH where H ∈ ΣA

• AVDnil x R → AVDnilAR where R ∈ ΣA
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• AVDnil x H → AVDnilAH where H ∈ ΣA

• AVDDC x R → AVDDCAR where R ∈ ΣA

• AVDDC x H → AVDDCAH where H ∈ ΣA

The initial state of the game w0, is equal to start ∈ W, where −−−→start =

{ASy, ANC , AV }. The belief context β0 is set to 0.8 (which is selected randomly

for this example), the update function for the belief context ↪→ simply makes no

modification to the belief contexts (i.e. β0 ↪→ βnew implies β0 = βnew). The CMS

C, and the initial value C0 is set to the NEMS value for the hypergame. The fear-of-

being-outguessed Υ, is set to an initial value γ of zero. The update function� maps

γ � Υ = 0. Therefore there is no update. The χ function assigns he player whose

turn it is to the game state w ∈ W where W → N. For example, χ(start) = A, while

χ(AC) = χ(AD) = D.

7.5.3.3 Game Mapping.

For Step 3: Game Mapping, an extensive form game tree T is associated with

the SCADA security game arena, φTSCADA. The extensive form game tree is defined

as:

T = (S,⇒, s0, λ) (7.6)

where (S, ⇒) is a countably infinite tree rooted at s0 with edges from Σ. The

nodes of the tree are given by S, where S = {root, ASy, ANC , AV , ASyDD, ASyDnil,

ASyDDC , ANCDD, ANCDnil, ANCDDC , AVDD, AVDnil, AVDDC , ASyDDAE, ASyDDADI ,

ASyDnilAE, ASyDnilADI , ASyDDCAE, ASyDDCADI , ANCDnilAE, ANCDnilADI , ANCDDCAE,

ANCDDCADI , AVDDAR, AVDDAH , AVDnilAR, AVDnilAH , AVDDCAR, AVDDCAH}.

The root of the tree denoted s0, is equal to root ∈ S. The x=⇒ is the function that moves

between nodes of the tree using the edge denoted by x ∈ Σ.
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The possible nodes transitions are {root Sybil==⇒ ASy, root NodeCompromV=========⇒ ANC ,

root V=⇒ AV where Sy, NC, V ∈ σA} ∪ {ASy
D=⇒ ASyDD, ASy

nil=⇒ ASyDnil, ASy
DC==⇒ ASyDDC , ANC

D=⇒ ANCDD, ANC
nil=⇒ ANCDnil, ANC

DC==⇒ ANCDDC , AV
nil=⇒

AVDnil, AV
D=⇒ AVDD, AV

DC==⇒ AVDDC where D, nil, DC ∈ σD} ∪ {ASyDD
E=⇒

ASyDDAE, ASyDD
nil=⇒ ASyDDAnil, ASyDnil

E=⇒ ASyDnilAE, ASyDnil
DI=⇒ ASyDnilADI ,

ASyDDC
E=⇒ ASyDDCAE, ASyDDC

DI=⇒ ASyDDCADI , ANCDD
E=⇒ ANCDDAE, ANCDD

DI=⇒ ANCDDADI , ANCDD
nil=⇒ ANCDDAnil, ANCDnil

E=⇒ ANCDnilAE, ANCDnil
DI=⇒

ANCDnilADI , ANCDDC
E=⇒ ANCDDCAE, ANCDDC

DI=⇒ ANCDDCADI , AVDD
R=⇒

AVDDAR, AVDD
H=⇒ AVDDAH , AVDnil

R=⇒ AVDnilAR, AVDnil
H=⇒ AVDnilAH AVDDC

R=⇒ AVDDCAR, AVDDC
H=⇒ AVDDCAH , where E, DI, nil, R, H ∈ σA}.

The function λ is S → W, where

• λ(s0) = w0

• ∀s, s′ ∈ S, if s a=⇒ s′ then λ(s) a=⇒ λ(s′)

• if λ(s) = w and w a−→ w′ there exists s′ ∈ S s.t. s a=⇒ s′ and λ(s′) = w′

7.5.3.4 Path Structuring.

For Step 4: Path Structuring, the players individual paths through the game

tree are defined. Theses paths are later used to define the strategies, but are not

required. Defining the paths reduces the amount of notation required for the strategy

definitions. The model for the extended SCADA security temporal hypergame can

be represented by MSCADA = (T ,V). The game tree, T is given from the previous

game mapping and the valuation function v is given by:

• V(pint) = {s0}

• V(pdomA) = {AV , AVDD, AVDDAR}

• V(pdomDexp) = {ASy, ASyDD} or {ANC , ANCDD} or {AV , AVDD}

196



• V(pworstA) = {ANC , ANCDD}

• V(pworstD) = {ANC , ANCDnil} or {ASy, ASyDnil} or {AV , AVDnil}

When the hypergame advantage (defender can Disconnect) is considered, the

additional functions are included; while the other functions remain the same:

• V(pdomDhyp
) = {ASy, ASyDDC} or {ANC , ANCDDC} or {ANC , ANCDD} or {AV ,

AVDDC}

• V(pworstAhyp
) = {AV , AVDDC , AVDDCAR} or {AV , AVDDC , AVDDCAH} or

{ASy, ASyDDC , ASyDDCADI} or {ASy, ASyDNCDDCAE}

The pdomDhyp
represents the dominant path for the defender from the attacker’s

point-of-view. The attacker has failed to account for the defender’s disconnect option.

While the pdomDexp represents the dominant path for the defender when the defender’s

advantage (Disconnect) is considered. The attacker is unaware of this option, and

therefore assumes pdomDexp is the expected outcome for a rational defender.

7.5.3.5 Define Player Strategies.

For Step 5: Define Player Strategies, strategies for each player are defined in

terms of the states and transitions, as well as the paths defined previously. In this

game the attacker’s strategy can be defined as:

StratA ≡ ([pint 7→ Sy]A) · ([pint 7→ NC]A) · ([pint 7→ V ]A) · ([ � [turnA 7→ Sy]A ⇒

[turnA 7→ E]A ∨ [turnA 7→ DI]A}) · ([ � [turnA 7→ NC]A ⇒ [turnA 7→ E]A ∨

[turnA 7→ DI]A ∨ [turnA 7→ nil]A}) · ([ � [turnA 7→ V ]A ⇒ [turnA 7→ R]A ∨

[turnA 7→ H]A}) · ([pdomDexp 7→ D]D ⇒ [pmaxA
7→ R]A) · ([pdomDexp 7→ nil]D ⇒

[pmaxA
7→ H]A)

From the attacker’s perspective, the defender’s strategy is defined as:
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StratDA ≡ ([pint 7→ Sy]A ⇒ [pdomDexp 7→ D]D) · ([pint 7→ NC]A ⇒ [pdomDexp 7→ D]D) ·

([pint 7→ V ]A ⇒ [pdomDexp 7→ D]D) · ([pint 7→ Sy]A ⇒ [pworstD 7→ nil]D) ·

([pint 7→ NC]A ⇒ [pworstD 7→ nil]D) · ([pint 7→ V ]A ⇒ [pworstD 7→ nil]D)

But the defender has an extra action available (Disconnect) that the attacker is

not aware of, so the defender’s strategy can be defined as:

StratD ≡ ([pint 7→ Sy]A ⇒ [pdomDhyp
7→ DC]D) · ([pint 7→ NC]A ⇒

[pdomDhyp
7→ DC]D ∨ [pdomDhyp

7→ D]D) · ([pint 7→ V ]A ⇒ [pdomDhyp
7→ DC]D) ·

([pint 7→ Sy]A ⇒ [pworstD 7→ nil]D) · ([pint 7→ NC]A ⇒ [pworstD 7→ nil]D) ·

([pint 7→ V ]A ⇒ [pworstD 7→ nil]D)

7.5.3.6 Analyze Model.

For the final Step 6: Analyze Model, the previous definitions are used to logically

analyze the constructed model. From the previous definitions, StratDA {D (pdomDexp

∨ pworstD), which means the defender can either follow the dominant strategy or the

worst case strategy from the view of the attacker. A rational defender is always

assumed to follow the dominant strategy. In this case if the defender plays Defend

then the defender can ensure the worst outcome is avoided:

[turnD 7→ D]D {D ¬pworstD

This represents the standard result of the game where the defender always desires

to defend. With this, the defender would expect the attacker to reach the expected

best case pexpA. Which means the defender would expect StratA {A pdomA.

The attacker follows ¬V?[turnA 7→ V ]A ∧ V?[turnA 7→ V ]A. This allows the

attacker to achieve the best outcome, while allowing the defender to follow their

perceived dominant strategy.

For the defender the solution is always to use the ”Defend” strategy:
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[turnD 7→ D]D {D ¬pworstD

The attacker’s strategy is to always choose the Virus (V) in the first round and

then the Ruin (R) action in the third round. This strategy represents the temporal

relationship between the actions for the attacker. If the attacker chooses any other

available action in the first round, then the Ruin action is not available in the next

round.

¬V?[turnA 7→ V ]A ∧ V?[turnA 7→ V ]A {A pdomA

Up to this point the analysis has focused on the solution to the game without

considering the hypergame advantage for the defender. From the previous definitions,

StratD {D (pdomDhyp
∨ pworstD), which means the defender can either follow the

hypergame strategy or the worst case strategy. It is assumed that a rational defender

always plays to the hypergame strategy, since it is dominant. In this case, if the

defender plays ”Defend” or the hidden hypergame strategy ”Disconnect”, then the

defender can ensure the worst outcome is avoided:

[turnD 7→ D]D ∨ [turnD 7→ DC]D {D ¬pworstD

This shows the hypergame result of the game where the defender would expect

the attacker to reach the expected worst case pworstD . Which means the defender

expects StratA {A pworstAhyp
.

The attacker still follows ¬V?[turnA 7→ V ]A ∧ V?[turnA 7→ V ]A. This allows

the attacker to achieve their perceived best outcome in the temporal sense, which is

StratA{A pdomA from the previous analysis. Because of the hypergame, the attacker

really ends up in the worst outcome StratA {A pworstAhyp
.

Since the solution to the hypergame is for the defender to play Defend or

Disconnect and the attacker to play Virus followed by Ruin, the defender can eliminate
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Defend. By playing only Disconnect, the defender can guarantee the best possible

outcome.

[turnD 7→ DC]D {D ¬pworstD

The attacker’s strategy is to always play the action Virus (V) in the first round

and then Ruin (R) in the third round.

[turnD 7→ D]D ∨ [turnD 7→ DC]D {D ¬pworstD

The temporal hypergame analysis shows that the defender can improve upon

their outcome by leveraging the attacker’s misperception as the game progresses

temporally. It also shows that the defender can guarantee the attacker reaches the

worst case outcome instead of the best outcome from the standard game analysis.

7.6 Summary

This chapter applies the temporal hypergame framework presented in the

previous chapters to the game theoretic Prisoner’s Dilemma, an iterated hypergame,

and three cyber physical examples. All of the examples use the six-step process

from Section 7.3 for creating a representative model with the temporal hypergame

framework. These examples are applied for validation of the temporal hypergame

framework in order to show the utility and applicability of the framework. The

examples chosen exercise part of the temporal hypergame framework and are not

all inclusive. Each example exercises parts of the framework, showing the temporal

hypergame framework provides the correct insight into the modeled event.
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Figure 7.10: Expanded SCADA Sensor Network Game.
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VIII. Conclusions and Future Work

This research presents a temporal hypergame framework to capture the temporal

aspects of conflict and decision making. Overall this dissertation presents the first

application of temporal logic to hypergames in order to provide a more flexible method

for modeling by domain experts. Using this framework the concepts of trust, distrust,

and deception are developed and formalized for Hypergame Theory. The framework

is applied to a SCADA hypergame, as well as classical game theoretic games, to show

that the framework is a realistic modeling method for a variety of applications given

its flexibility.

8.1 Conclusions and Findings

Findings 1, 2, 3, and 4 take concepts from Sasaki [310] and generalize the concepts

to Vane’s hypergame model [356], by defining the base game, difference game, and

hyper Nash equilibrium in Chapter 5. The rest of the findings are in Chapter 6.

Findings 5, 6, 7, 8, 9, 10, and 11 define trust, misperception and deception over the

temporal hypergame model. Findings 13, 14, and 15 relate theorems concerning the

SPNE of repeated games to the temporal hypergame framework. The findings are

repeated here for reference.

Finding 1. Let H = (Gp, Gq) be a hypergame with Gp = (N, Σp, up) and Gq = (N,

Σq, uq) where p, q ∈ N. A normal form game G = (N, Σ, u) is called the base game

of H iff u = up, u = uq, and Σ = Σp ∩ Σq , . Let the base game (BG) of hypergame

H be denoted by BGH .

Finding 2. Subgames always have the same base game

Finding 3. Let H = (Gp, Gq) be a hypergame with Gp = (N, Σp, up) and Gq = (N,

Σq, uq) where p, q ∈ N. A normal form game G = (N, Σ, u) is called the difference

202



game of H iff u = up ∪ uq \ up ∩ uq, Σ = Σp ∪ Σq \ Σp ∩ Σq, and u , or Σ , . Let

the difference game of hypergame H be denoted by ∆H .

Finding 4. Let H = (Gp, Gq) be a hypergame with Gp = (N, Σp, up) and Gq = (N,

Σq, uq). Then a∗ ∈ Σp ∩ Σq is called a stable hyper Nash (SHN) equilibrium iff a∗ ∈

N(Gp) and a∗ ∈ N(Gq) where N(G) represents the Nash equilibriums for game G.

Finding 5. Weak Trust - Player 1 has weak trust in Player 2 if at a vertex s′ ∈ Sσ1

∃ s ∈ Sσ1 and a ∈ ΣFull such that s a=⇒ s
′.

Finding 6. Strong Trust - Player 1 has strong trust in Player 2 if ∀ s′ ∈ Sσ1 ∃ s

∈ Sσ1 and a ∈ ΣFull such that s a=⇒ s
′.

Finding 7. Weak Distrust - Player 1 has weak distrust in Player 2 if at a vertex

s
′ ∈ Sσ1 @ s ∈ Sσ1 and a ∈ ΣFull such that s a=⇒ s

′.

Finding 8. Strong Distrust - Player 1 has strong distrust in Player 2 if ∀ s′ ∈ Sσ1

@ s ∈ Sσ1 and a ∈ ΣFull such that s a=⇒ s
′.

Finding 9. Mistrust - Player 1 mistrust Player 2 if ∃ s′ ∈ Sσ1 where Player 1

distrusts Player 2.

Finding 10. Misperception - Player 2 misperceives the strategy of Player 1 if there

is at least one vertex s′ ∈ Sσ1 ∃ s ∈ Sσ1 and a ∈ ΣFull such that s a=⇒ s
′ so that when

a new strategy σ∗ which is equal to σ1 except that @ s ∈ Sσ1 and a ∈ ΣFull such that

s
a=⇒ s∗ and (σ1, σ2) ≤1 (σ∗, σ2)

Finding 11. Deception - Player 1 (p) deceives Player 2 (q) if for a hypergame H,

the following is true:

• Player 2 trusts Player 1, according to Finding 5 or Finding 6.

• Player 2 misperceives the strategy of Player 1, according to Finding 10.
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• If there exists a strategy pair (σp, σq), σp ∈ Σp and σq ∈ Σq where (σp, σq) ∈

N(GT ) and (σp, σq) < SHN(GT ) and (σp∗, σq) ∈ SHN(GT )

Finding 12. In every finite temporal hypergame with mixed strategies, there is at

least one SPNE (which may be in the base game).

Finding 13. If a temporal hypergame H at some time x has a Nash equilibrium in

the base game (i.e. stable hyper Nash equilibrium), then the temporal hypergame has

a SPNE.

Finding 14. In both the infinite and finite temporal hypergame with mixed strategies,

there is at least one SPNE.

Finding 15. In a hypergame H, a strategy is a SPNE in the base game iff there is

no profitable one-shot deviation. A one-shot deviation would produce a strategy in the

difference game of hypergame H.

8.2 Future Work

The first area would be gathering empirical evidence on how to integrate this

approach into real-world decision making problems for the warfighter. The warfighter

(especially in the cyber sense) would benefit from the insights and concise image of the

battlefield that hypergame theory present such as the temporal hypergame framework

presented in this dissertation. This approach has a lot of theoretical applicability, but

it is still a model that has not been exercised in any real capacity. Especially when

considering the functional payoffs. It is also necessary to understand the ability of

the warfighter when using tools such as those proposed in this research. First, is

the level of information required for modeling realistic and obtainable? Second, is

the warfighter able to use a tool that models misperceptions without introducing

additional bias into the decision making process?
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The second area of future work concerns the jHALF software for analyzing

hypergames [135]. It should be updated to support the temporal hypergame

framework proposed in this research. There are indications in the design of the

jHALF software or the temporal hypergame framework that would make the two

incompatible. Incorporation also opens the door for additional analysis, such as

modeling checking. While modeling checking was not part of this research, its

applicability to Hypergame Theory should be investigated and understood.

The third area of future research is into real-time strategy games. The hypergame

model can be used to determine the best strategy given the game environment. It

also be used to train a decision maker by adding or removing columns and rows from

the hypergame. This allows game ply by the AI to be tuned to the player’s ability -

becoming harder for advanced players or softening for novice players. By applying the

temporal hypergame framework to the real-time strategy games, complex strategies

can be formed to mimic real world events.

The fourth area is proving how “strategy switching” [275], as defined in

the temporal hypergame framework, affects the outcomes and analysis. Strategy

switching can cause a cycle to appear over time as the game progresses. The properties

of the hypergame model should be identified to limit the cycling. This may involve

using a subset of the strategy switching operators in the language model.
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Appendix A: Hypergame Military Applications Expanded

This appendix expands on the military applications of hypergames. Previously,

a short review was provided on many of the applications. Here each application is

expanded to show the notion as well as how the analysis was performed by the original

authors. The expanded form is contained in an appendix in order to keep flow and

consistency in the main body of the document. The Fall of France, Nationalization of

the Suez Canal, an Arms Race, Nuclear Confrontation, and the Falkland/Malvinas

Conflict are discussed.

A.1 Fall of France

Bennett and Dando [40] [39] first applied hypergames to the first real world

application during their analysis of the Fall of France during WWII. Hypergame

representation of the Fall of France by Bennett and Dandos is shown in Table A.1.

The Germans believe the French would not include the Germans attacking

through the Ardennes forest since such an attack could be stopped. The Germans

therefore reasoned the French would believe an attack in the north (Belgian plains)

or the south (Maginot Line) was more likely. The French player is only able to

see the game on the left in Table A.1. Given the outcomes, the French follows

the Nash Equilibrium, choosing F2 as their strategy and expecting the Germans to

choose G2, but the Germans were playing a metagame that incorporated the broader

view, and included the strategy the French had discounted. The Germans figured

the French would not consider defending the center heavy, so they decided to attack

there, choosing G3 from the game on the right in Table A.1. This lead to the success

of the German attack and France falling quickly. This attack had to be excluded from

French rationale in order to make it feasible and allow the Germans to select their

highest expected utility based on probable French thought.
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Table A.1: Hypergame Representations of the Fall of France.

French

F1 F2

Germans G1 1,4 2,3

G2 4,1 3,2*

French

F1 F2 F3

1,4 2,3 2,3 G1 Germans

4,1 3,2 3,2* G2 * Nash Equilibrium

3,2 5,0** 2,3 G3 ** True Outcome

A.2 Nationalization of the Suez Canal

Wright et. al. [369] [328] presented a more complex hypergame example in their

analysis of the Nationalization of the Suez Canal. By 1955 Egypt was becoming

nationalistic, and pursued plans to free itself of control by Britain. Britain wanted to

protect Western marine traffic, including safeguarding oil shipped from the Middle

East, by preventing Russian interference in the Middle East and protecting the Suez

Canal. Tensions had also increased between Egypt and Israel. Military raids between

the two countries lead to both countries desiring a stronger military. In August of

1955, Egypt wanted to purchase arms to support its military. France, Britain, and

the U.S. did not supply arms because of the Tripartite Declaration of 1950 limited

arms deals. This lead to Egypt approaching Russia to purchase arms.

In 1956, Egypt wanted to create hydroelectric power and new farmland by

building the High Aswan Dam. The Egyptian government could not afford the cost

of constructing the dam without help from either the West or Russia. The West was

concerned that Russia would seize the opportunity to fund the construction to develop

closer ties with Egypt, building on the momentum of the previous arms deal. Western

funding would keep Russia from gaining influence in the Middle East, while allowing

Britain to gain influence after its failure to support the arms deal. Meanwhile the

U.S. desired to help Egypt develop independence economically.
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By December 1955 a proposal to finance the dam construction was made by

Britain, the U.S., and the World Bank. The deal provided 30% of the cost of

constructing and imposed numerous conditions:

• Egypt had to commit one third of its internal revenue for 10 years to the

construction of the dam

• Egypt was required to use economic policy to limit inflation from the addition

of foreign capital

• Competitive selection was required for contracts

• Egypt could not accept help from communist countries

Egypt already wanting less control by Britain, feared the terms of the loan would

lead to Western dominance, and decided to reject the finance proposal. This caused

Egypt to change the proposal and send a counter offer to the West in February 1956.

By this time domestic policy in the U.S. was shifting and anti-western sentiment

was increasing in the Middle East and the U.S. was quickly losing interest in the

financing offer. Meanwhile the General of the Jordan Army, an Englishman, was

dismissed which was seen as a political move caused by the anti-western sentiment.

This caused the U.S. and Britain to let the finance proposal expire. Egypt hoped

either the counter offer would be accepted or its negotiating position would change.

By April 1956, Egypt desired to purchase more weapons as the Israeli attacks

increased. A deal was reached in May of 1956 to limit the shipment of arms into

the Middle East by Russia, the U.S., and Britain, which lead to Egypt turning to

the People’s Republic of China. This increased tension with the U.s. and Britain,

putting more strain on negotiating the loan offer. Egypt was becoming aware of lack

of interest in the loan by the West and decided to accept the original loan offer. In
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an effort to get the U.S. to reconsider the original loan, Egypt stated it could also

get a loan from Russia. The U.S. felt Egypt was trying to blackmail and withdrew

the loan offer with the British, with the official reason being Egypt did not have the

resources to complete the dam construction.

Egypt turned to Russia for a last chance at a loan, but Russia offered no such

offer. Without foreign capital, seizure of the Suez Canal was attractive to Egypt.

Nationalization of the Canal would raise much needed cash and remove the last of

Western control in Egypt.

Egypt wanted to avoid another ultimatum from the West and decided for a

surprise canal takeover. A surprise takeover was thought to help avoid the loss of

life from military clashes. Egypt also thought it would take Britain two months to

prepare a military response and a settlement could be negotiated before the response

took place. In July of 1956, Egypt nationalized the Suez Canal, denouncing the West

in the process. the West was shocked by the move, and immediately raised concerns

about the security of the canal.

The hypergame is formalized by picking a point in time to model. The authors

choose February of 1956 when Egypt proposed an alternative loan agreement which

is before the West became discouraged with the process. Egypt is trying to assert its

nationalism and wants to finance the Aswan Dam. Britain wants to be influential in

the Middle East, preventing Russian influence and appealing Egypt after the arms

refusal. The U.S. wanted to limit Russia’s influence in the Middle East and promote

Egyptian nationalism without upsetting Britain. Russia wanted stronger influence in

the Middle East.

Britain and the U.S. are modeled as one player, since they act together on the

loan proposal. Because Russia is not an active participant, it is not represented in

the game. The options of the hypergame are the following:
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Britain and U.S.

1. Offer loan based on original conditions

2. Offer loan on Egypt’s conditions

Egypt

3. Negotiate loan based on original conditions

4. Negotiate loan on Egypt’s conditions

5. Appease West

6. Pursue Russian loan.

Egypt (secret)

7. Pursue Russian loan and if it fails, then nationalize the Suez Canal

First the unfeasible options are excluded such as the West offering a loan on

the original conditions and offering a loan with Egypt’s conditions. The possible

outcomes are listed in Table A.2 where each column is an outcome. Each outcome is

decimalized for easy manipulation. Decimalization is accomplished by treating each

outcome as a binary number with the lowest order bit on top. The binary number is

then converted to a decimal number.

Decimalized outcomes are then put in order of preference for each player. The

most preferred outcome is placed on the left, with the least preferred on the right, as

shown in Table A.3. Two preference vectors are used for Egypt - one to show Egypt’s

preferences from the viewpoint of the West and the other for Egypt’s real preferences.

The only difference between vectors is that the first vector does not contain option 7.

Each outcome is then analyzed for stability from the point of view of each player.

The equilibria are formed from outcomes that are stable for all of the players. This is
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Table A.2: Possible Outcomes.

Players/Options Possible Outcomes

West

1) 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1

2) 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Egypt

3) 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0

4) 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0

5) 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0

6) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Egypt(secret)

7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Decimalized 0 1 4 5 8 9 10 20 21 24 25 26 32 33 64* 65*

* Unknown to the West

done by looking for Unilateral Improvements (UIs) from each outcome in a player’s

preference vector. Unilateral Improvement (UI) is formed when the player reaches a

preferred outcome where the other player’s strategies remain the same. Table A.4 give

the UIs for each outcome in the preference vector. If an outcome does not have a UI

then it is rational and stable for the given player. In the table ”r” indicates rational

outcomes, ”u” indicates an unstable outcome. Unstable outcomes exist when there is

a UI where another player cannot make an improvement which results in an outcome

worse than the original outcome for the player. All UIs below an outcome must be

checked to see if another player can deter the outcome. The outcome is stable, marked

by an ”s”, if all of the UIs have a deterrent. For example, Egypt has a UI from 65 to

5. The West does not realize 65 is a possibility, but there is an UI from 5 to 4. Since
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4 is less preferred to 65 by Egypt, this deters Egypt from moving from outcome 65

to 5.

Equlibria are where outcomes are stable for all players. Egypt’s and the West’s

preference vectors are compared, if both vectors have an ”r” or ”s” then an ”E”

is placed above the preference to denote an equilibrium. An ”x” denotes a lack of

equilibrium. Outcomes 5, 64, and 65 are the true equilibria to the Suez Crisis, while

the West believes 5, 32, and 33 are the equilibria. This shows outcome 5 is preferred

by all players - Egypt would accept the original loan. From history it is known, this

is not what happened. Egypt was not irrational. Instead Egypt tried to wait for

the West’s attitude to change and allow outcome 10 - a loan on Egypt’s terms. The

West’s attitude did not change in Egypt’s favor, and the possibility of a loan passed.

This left only 64 and 65 as equilibria, and the outcome 64 is what happened in history.

A.3 Arms Race

Bennett and Dando [41] also model an arms race as a hypergame where they

model an arms race between two nations, Nation A and Nation B. Higher numbers

are used to represent more highly preferred outcomes, as shown in Figure A.1. The

preference of both nations is peace loving with the following preferences: (4) mutual

disarmament, (3) arms lead for self, (2) arms Race, and (1) arms lead for opponent.

In this game, both peace loving nations would have no trouble reaching the desired

outcome of mutual disarmament. Mutual disarmament is the only stable outcome

(both nations choose “disarmâĂŹâĂŹ).

Even with peace loving players, Bennett and Dando introduce misperception

into the model by giving NationâĂŹs X belief of the opponent preferences. Each

nation believes its opponents preferences are the following: (4) arms lead for self, (3)

mutual disarmament, (2) arms race, and (1) arms lead for opponent. As shown in
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Figure A.1: Arms Race Model âĂŞ Preferred Outcome.

Figure A.2, these misperceptions about opponent preferences leads to a hypergame

where each nation perceives a slightly different version of the same game. While each

nation would like to move to mutual disarmament, they will be deterred because of

the perception that the other nation would prefer to an arms lead. This leads to an

arms race (both nations choose “armâĂŹâĂŹ).

The authors give two reasons for the nations to have misperceptions: (1) failure

to see how the other side sees the world, i.e. alternative views, (2) concentration on

the individual instead of the system in general. Their analysis forces the analyst to

consider the perceptions, beliefs, and actions of all parties involved, which they claim

leads to a more competent analysis.

A.4 Nuclear Confrotation

Fraser et al. [107] apply five conflict analysis models to a possible nuclear

confrontation between the USA and USSR. The five conflict analysis models are
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Figure A.2: Arms Race Model âĂŞ Misperceptions introduce a hypergame.

normal form analysis from game theory, metagame analysis [175], and hypergame

analysis [108] [106]. An overview of each of the models follows.

The normal form model is shown in Figure A.3 and is taken from the work of

Richelson [304]. The game theoretic model is played between two players, United

States of America (USA) and Union of Soviet Socialist Republics (USSR). The three

strategies for each country are: (C) conventional attack, (L) limited nuclear strike,

(S) full nuclear attack.

The authors state that the normal form is useful for giving structure to real world

problems, as well as modelling the interactions between players. They also concluded

the normal form lacks ability to model complicated problems, including ones with

more than two players or a large number of strategies, and is not convenient for

solving the model for equilibria that are more subtle [107]. In order to overcome the

issues with normal form, the authors use metagame theory from Howard [175].
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Figure A.3: USA âĂŞ USSR Nuclear Confrontation in Normal Form.

Metagames are game theoretic models that take into account the possible

reactions a player will have to the known strategies of another player(s). The

playerâĂŹs strategies reflect its reaction to the other player(s) in a metagame, instead

of just the actions the player can choose from in the normal form. Because players

can have reaction to reactions, there are an infinite number of metagames for each

basic game. To reduce the number of metagames, and allow for analysis, Howard

([175] developed the Characterization Theorem. The Characterization Theorem

allows analysis of all possible metagames, while only analyzing the initial game. The

outcomes of the initial metagame are known as metarational outcomes, and either

is considered stable for a particular player. There are three types of metarational

outcomes:

• Rational Outcomes (Nash Equilibrium)

• Symmetric Metarational Outcomes (Dominated Strategies)
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• General Metarational Outcomes (Weak form of stability)

Using the basic game shown in Figure A.3, the metagame analysis shown in

Figure A.4 is constructed for the USSR outcome (L, C) or (010 100) or limited

nuclear attack by USA and conventional attack by USSR. The player and the actions

available to each are listed on the left side of the figure. Next a 1 or 0 is placed

in the same row as the actions to indicate if the action is taken (1) or rejected (0).

The combination of 1âĂŹs and 0âĂŹs in a column forms a strategy for the particular

player. Each feasible outcome is placed either in the preferred category or the not

preferred category relative to the particular outcome under analysis.

Figure A.4: Metagame Analysis of Outcome (010 100) for the USSR.

This outcome is symmetric metarational for USSR because USA has the ability to

enforce sanctions on the USSR. The stability for the all the outcomes in this game are

listed in Table A.5. This shows that the outcome of total nuclear war is rational. The

other four possible outcomes depend on whether the USA can enforce the sanctions,

due to the symmetric metarationality for the individual strategies. The ability to
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determine if sanctions can be enforce is a complex problem, for which the authors do

not give a solution. This leads to the majority of outcomes being equilibria.

The improved metagame analysis proposed by Fraser and Hipel [108] [106] allow

for hypergame analysis. The improved analysis uses the known preferences of the

other player(s) to test if the threat of sanction is credible. The authors convert the

binary preference vector into a decimalized form. For example, the outcome (100 010)

has a decimalized value of: 1∗20 + 0∗21 + 0∗22 + 0∗23 + 1∗24 + 0∗25 = 1 +16 = 17.

The three distinct representations and the relationship for outcomes are shown in

Table A.6.

Next the UIs of every player for every one of the outcomes in the preference

vectors are found. UIs are recorded below the preference vector outcomes in

decreasing order of preference. This is shown in Table A.7. Above each outcome

is recorded the player stability: r for rational, s for symmetric metarational, and u for

unstable. Then overall stability is identified by E for equilibrium and X for unstable.

Again, the analysis shows the only stable outcome that is rational for both players is

36, or (001 001), or (S,S).

Their analysis determine the improved metagame analysis (i.e. hypergame

analysis) of conflicts is the best for modeling real world conflicts. This is

due to its nature for extension, where it can be used to model coalitions and

bargaining/negotiation situations between players.

A.5 Falkland/Malvinas Conflict

Hipel et al. [167] examine the Falkland/Malvinas conflict between Britain and

Argentina in 1982. The authors approach the conflict from a different angle in their

analysis of the conflict between Britain and Argentina. The hypergame analysis of the

conflict is used to show how misperceptions dictated an outcome that was unexpected
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by all sides. The authors construct the hypergame model based on historical material,

using a first-level hypergame.

The conflict can only be modeled at a certain point and time because the conflict

is a dynamic phenomenon. A player’s perceptions, actions, strategies, and preferences

will change over the course of the conflict. The authors therefor chose three important

periods of time in the conflict: the day of invasion by Argentina, a month long period

of negotiations, and the day Britain issued a military response. Each period of time is

modeled as a game iteration where each choice and outcome from a previous iteration

affects the next iteration.

The game changes at each iteration as the choices of the players are used to

updated the hypergame model, as shown in Table A.8. In the table, an underlined

strategy refers to the strategy taken by the corresponding player. As the hypergame

model is updated, it is possible to reduce it to a simple game. The simple game forms

as misperceptions are corrected as players become aware of the remaining actions

and outcomes. It is shown that the stability analysis for Britain is the belief that

both sides would prefer to settle the conflict by peace. Argentina’s preference is to

invade. This gives the stability set {settle by peace, invade}. The real outcome is not

expected by either player.

At the next iteration Argentina continues to play the same game while Britain

updates its game with Argentina’s past actions. Britain tried to maximize the pressure

for a peaceful resolution, while Argentina continued to view the British warning as

a bluff. At this point if both player’s have the same attitude (and information) the

conflict could be avoided.

At the third iteration it can be seen that the player’s knowledge has increased

since the start of the conflict, although misperceptions by both players played a fatal

role at each iteration. At this point the player’s had complete information about
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the game and the other player’s preferences, but the conflict had already moved to

a point where neither player could return to their original position. Therefore, the

worst possible outcome, war, happens in the conflict.
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Table A.3: Preference Vectors.

Egypt 10 5 [64 65] [32 33] [0 1 4 8 9] [20 24 25] 26 21

West’s

View of

Egypt

10 5 [32 33] [0 1 4 8 9] [20 24 25] 26 21

West 21 [20 24 25] [0 1 4 8 9] 5 26 [32 33] 10

[] = equally preferred outcomes
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Table A.4: UIs in Preference Vectors.

Egypt’s View of Egypt

X E E E X X X X X X X X X X X X

r r r s u u u u u u u u u u u u

10 5 [64 65] [32 33] [0 1 4 8 9] [20 24 25] 26 21

5 64 5 64 5 64 64 5 64 64 5 10 5

65 32 65 32 32 65 32 32 65 65

33 33 8 8 33 33

4 4 1 1

9 9

25

British and American View of Egypt

X E E E X X X X X X X X X X

r r r s u u u u u u u u u u

10 5 [32 33] [0 1 4 8 9] [20 24 25] 26 21

5 32 5 32 32 5 32 32 5 10 5

33 33 8 8 33 33

4 4 1 1

9 9

25

Britain and U.S.

r s r r r r r r r s u r r u

21 [20 24 25] [0 1 4 8 9] 5 26 [32 33] 10

21 4 24 9

25 8
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Table A.5: Metagame Analysis Results for the USA âĂŞ USSR Nuclear Confronta-

tion.

Outcome
USA

Stability

USSR

Stability

Overall

Stability

(100 100)
Symmetric

Metarational

Symmetric

Metarational

Equilibrium

(if credible)

(100 010)
Symmetric

Metarational
Rational

Equilibrium

(if credible)

(100 001) Unstable
Symmetric

Metarational
Unstable

(010 100) Rational
Symmetric

Metarational

Equilibrium

(if credible)

(010 010)
Symmetric

Metarational
Rational

Equilibrium

(if credible)

(010 001) Unstable
Symmetric

Metarational
Unstable

(001 100)
Symmetric

Metarational
Unstable Unstable

(001 010) Rational Unstable Unstable

(001 001) Rational Rational Equilibrium
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Table A.6: Outcome Representations and Relationships [107].

Players/Options Outcomes

USA

C 1 0 0 1 0 0 1 0 0

L 0 1 0 0 1 0 0 1 0

S 0 0 1 0 0 1 0 0 1

USSR

C 1 1 1 0 0 0 0 0 0

L 0 0 0 1 1 1 0 0 0

S 0 0 0 0 0 0 1 1 1

Normal Form: (C,C) (L,C) (S,C) (C,L) (L,L) (S,L) (C,S) (L,S) (S,S)

Decimalized

Outcomes
9 10 12 17 18 20 33 34 36

Table A.7: Improved Metagame Stability Analysis [107].

E X X E E X E X X overall stability

r s r s s u r u u player stability

USA 10 12 20 18 9 17 36 34 33 preference vector

10 20 10 20 36 36 UIs

12 18 34

r s s r s s r u u player stability

USSR 17 9 33 18 34 10 36 20 12 preference vector

17 17 18 18 36 36 UIs

9 34 20
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Table A.8: Perceptual and overall equilibria in the Falkland Islands crisis.

Game Equilibria H′ (Iteration 1) H′ (Iteration 2) H′ (Iteration 3)

Argentinian

[
Invade

Blockade

] [
Maintain

Blockade

]

British

[
SettlebyP eace

SettlebyP eace

] W ithdraw

Negotiate

Negotiate

 [W ithdraw

Blockade

] Maintain

Blockade

Invade



Overall

[
Invade

SettlebyP eace

] [
Maintian

Negotiate

] [
Maintain

Blockade

] Maintain

Blockade

Invade

 [
Maintain

Invade

]
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Appendix B: Hypergame Network Defense Application Expanded

There are many approaches that apply game theory to intrusion problems on

networks. One approach uses game theory to select which security measures are

applied to the network based on which ones result in the lowest incurred cost while

providing the highest level of security, thus allowing the system to be optimized [326].

This allows game theory to be a worthwhile tool in influencing the decisions made

in the deployment and use of intrusion detection systems. Research similar to [326]

shows the ability of game theory to solve and optimize network intrusion problems.

This section focuses on two key research efforts that have expanded the modeling

ability of intrusion detection.

B.1 Game Theoretic Model

Chen and Leneutre [72] model a heterogeneous network for intrusion detection

using game theory. They use the classic two-player game with an attacker and a

defender; each player has two strategies: to attack/not attack or defend/not defend.

The model presented by Chen and Leneutre starts with a network, N = (SD, SA, T ).

SD is the set of defending agents with an IDS module and SA is the set of attackers,

where T = {1,2,...,N} is the set of targets or network nodes that can be attacked.

The normal form of the intrusion model is shown in Table B.1

Table B.1: Chen and Leneutre Intrusion Model Normal Form for Target i.

Monitor Not Monitor

Attack (1 - 2a)Wi - CaWi, -(1 - 2a)Wi - CmWi Wi - CaWi, - Wi

Not Attack 0, -bCfWi - CmWi 0, 0
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The attacker attempts to attack the target nodes without being detected by

choosing a strategy, p = {p1, p1, ..., pN},according to the attack probability

distribution of the target set, T , where p represents the probability of attacking target

i, and
∑
i∈T

pi ≤ P ≤ 1 is the resource constraint of the attacker. The defender monitors

the target nodes by choosing a strategy, q = {q1, q1, ..., qN}, where
∑
i∈T

qi ≤ Q ≤ 1 is

the defender’s resource constraint.

The player’s utility values are based on functions with predetermined variables,

as shown in Table B.2. Wi represents the loss of security on a node. The detection

rate of the defender’s IDS is denoted a and the false alarm rate is denoted b, where

a, b ∈ [0,1]. The cost of attacking is represented by CaWi, the cost of monitoring

represented by CmWi, and CfWi is the loss of a false alarm. The model assumes

Ca < 1 and Cm < 1, so the players have incentive to monitor and attack.

Table B.2: Predetermined Variables from Chen and Lenutre.

Variable Symbol Meaning

a IDS Detection Rate

b IDS False Alarm Rate

Ca Cost of Attack

Cf Cost of False Alarm

Cm Cost of Monitoring

Wi Value of Target

The payoffs of the attacker is given by UA and the payoffs of the defender is given

by UD:

UA(p, q) =
∑
i∈N

piWi(1− 2aqi − Ca)
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UD(p, q) =
∑
i∈N

qiWi[pi(2a+ bCf )− (bCf + Cm)] -
∑
i∈N

piWi

This results in a intrusion detection game with an attacker and defender defined

with the following properties:

• Players: Attacker, Defender

• Strategy sets:

– Attacker: AA = {p:p ∈ [0, P ]N ,
∑
i∈N

pi ≤ P}

– Defender: AD = {q:q ∈ [0, Q]N ,
∑
i∈N

qi ≤ Q}

• Payoff: UA for attacker and UD for defender

• Game Rule: Strategy selection is done by the attacker/defender according to

p/q ∈ AA/AD, maximizing UA/UD

The authors use the utility values based on variables to show a real world

intrusion problem, where the rational attacker would have preference to attack higher

value targets. This is shown through Nash equilibrium analysis, as the mixed strategy

Nash equilibrium is zero with the target is not in the rational set. This research

contributes to intrusion detection by showing that increasing attack or monitoring

does not affect the Nash equilibrium, or does the attacker gain from a decreased attack

cost. Cost decreases are demonstrated when the intrusion detection system improves

its performance through improving the detection rate of intrusions or decreasing the

rate of false alarms. The authors use of variables in utility functions allow for valuable

insight into how to improve the individual player’s performance.

B.2 Hypergame Model

Alan Gibson presents a model based on the intrusion model presented by Chen

and Leneutre [72] and the Hypergame Normal Form model presented by Vane [356]
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[355]. The author achieves a model that has a changeable nonzero-sum utility values

with a process for delineation of strategy selection [135]. In order to achieve this

model, the Chen and Leneutre intrusion model is extended by adding strategies for

both the attacker and defender; while the HNF model is used to hide or discount

strategies from the other player.

In order to use hypergame theory, the game is organized with the defender as

row, as the Hypergame Normal Form analyzes the game from the perspective of the

row player. The model also keeps the functional and nonzero-sum utilities from the

Chen and Leneutre model. The resulting game model is shown in Figure B.1.

Figure B.1: Game Model as Presented by [135].

In order to use HNF as presented by Vane, the game is organized with the

defender as row, as the Hypergame Normal Form analyzes the game from the

perspective of the row player. The model also keeps the functional and non-zero-

sum utilities from the Chen and Leneutre model. The resulting game model is shown

in Figure B.3. The attacker is given a new strategy, zero-day exploit, which is an

attack where there is no defense since the vulnerability is undiscovered. The defender

is given two new strategies: provide ruse or shutdown. A defender may provide a ruse

by fooling the attacker into attacking a honeypot, while collecting information about
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the type and style of the attack. The shutdown option allows the defender to remove

the system from the network and stop the attack in its tracks, but also removes the

system from operation even for mission critical activities.

Table B.3: Gibson Intrusion Model Normal Form for Target i.

Not Attack Attack Zero-Day Exploit

Not Defend 0, 0 -Wi, Wi - CaWi -Wi, Wi - CzWi

Defend -bCfWi - CmWi, 0 -(1-2a)Wi-CmWi, (1-2a)Wi-CaWi -Wi, Wi - CzWi

Provide Ruse -Wi - CrWi, 0 Va - CrWi, Wi - CaWi -Wi, Wi - CzWi

Shut Down -Wi - CtWi, 0 Va - Wi - CtWi, -Wi Va - CtWi, -Wi

New variables are added for the calculation of utility payoffs, as shown in Table

B.4 with the original Chen and Leneutre variables. A zero-day exploit has a cost of

Cz which is a percentage of the value of the target. The shutdown option has a cost

of Ct which is the deration of time the system is unavailable on the network. The

provide ruse option has a cost of Cr which is the time or sophistication level of the

ruse. The important variable introduced by Gibson is the value of the attacker, Va

which allows certain strategies to be more worthwhile as the complexity and danger

level of the attacker increases. This allows the game to represent different levels of

attackers, such as script kiddies, hackavists, and national states.

Since the variables are not static and change over time or iterations an initial

value and a method for updated the variables is needed. The initial values for the

variables introduced by Gibson are shown in Table B.5. The variables are updated

using a predetermined change amount. The amounts for the variables introduced by

Gibson are shown in Table B.6.
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Table B.4: Enhanced Model Variables from Gibson.

Variable Symbol Meaning

a IDS Detection Rate

b IDS False Alarm Rate

Ca Cost of Attack

Cf Cost of False Alarm

Cm Cost of Monitoring

Cr Cost of Providing Ruse

Ct Cost of Time Down

Cz Cost of Zero-Day Exploit

Va Value of Attacker

Wi Value of Target

The payoffs of the attacker is given by UA and the payoffs of the defender is given

by UD:

UA(p, q) =
∑
i∈N

(
pAi (1-qi)[Wi - CaWi] + pZi (1-qi)[Wi - CzWi] + pAi q

D
i [(1-2a)Wi

- CaWi] + pZi q
D
i [Wi - CzWi] + pAi q

P
i [Wi - CaWi] + pZi q

P
i [Wi - CzWi] + pAi q

S
i [-

Wi] + pZi q
S
i [-Wi]

)

UD(p, q) =
∑
i∈N

(
pAi (1-qi)[-Wi] + pZi (1-qi)[-Wi] +(1+pi)qDi [-bCfWi - CmWi] +

pAi q
D
i [-(1-2a)Wi - CmWi] + pZi q

D
i [-Wi] + (1+pi)qPi [-Wi - CrWi] + pAi q

P
i [Va -

CrWi] + pZi q
P
i [- Wi] + (1 - Pi)qSi [-Wi - CtWi] + pAi q

S
i [Va - Wi - CtWi] + pZi q

S
i [Va

- CtWi]
)

This results in a intrusion detection game with an attacker and defender defined

with the following properties:
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Table B.5: Gibson’s defender type initial variable values.

Variable Nuisance Low Mid High All-Out

Detection rate for attack (a) 0.90 0.88 0.85 0.83 0.80

False alarm rate (b) 0.02 0.03 0.04 0.05 0.06

Cost of attack (Ca) 0.10 0.15 0.20 0.25 0.30

Cost of false alarm (Cf ) 0.90 0.85 0.80 0.75 0.70

Cost of monitoring (Cm) 0.10 0.15 0.20 0.25 0.30

Cost of providing ruse (Cr) 1.00 0.75 0.50 0.25 0.00

Cost of time down (Ct) 2.00 1.50 1.00 0.50 0.00

Cost of zero-day exploit (Cz) 1.00 1.00 1.00 0.80 0.50

Value of Attacker (Cz) 0.00 1.00 2.00 3.00 4.00

Value of Target (Ct) 1.00 1.00 1.00 1.00 1.00

• Players: Attacker, Defender

• Strategy sets:

– Attacker: AA = {p:p ∈ [0, P ]N ,
∑
i∈N

pi ≤ P}

– Defender: AD = {q:q ∈ [0, Q]N ,
∑
i∈N

qi ≤ Q}

• Payoff: UA for attacker and UD for defender

• Game Rule: Strategy selection is done by the attacker/defender according to

p/q ∈ AA/AD, maximizing UA/UD

B.3 Conclusion

A unique part of the model is that the attacker’s utility is the same for the

strategy to attack when the defender selects either the not defend or provide ruse

strategies. This correctly models the deployment of a sound honeypot where the

231



Table B.6: Gibson variable update changes.

Strategy Strategy Value

Variable Variable Selected Selected Changes

ID Name Defender Attacker Amount

Cr Cost of Not Defend Any -0.5

Providing Ruse Defend Any -0.5

Provide Ruse Any 0.1

Shut Down Any 0.1

Ct Cost of Not Defend Any -0.02

Time Down Defend Any -0.02

Provide Ruse Any 0.5

Shut Down Any 1.0

Cz Cost of Not Defend Zero-Day 0.1

Zero-Day Defend Zero-Day 0.4

Provide Ruse Zero-Day 0.1

Va Value of Not Defend Not Attack -0.01

Attacker Defend Not Attack -0.01

Provide Ruse Not Attack -0.01

Not Defend Attack 0.5

Defend Attack 0.1

Provide Ruse Attack 0.5

Not Defend Zero-Day 0.5

Defend Zero-Day 1.0

Provide Ruse Zero-Day 1.0
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attacker believes they have succeeded in attacking the desired system. It also gives

the attacker decreased utility when the system is shut down because of an attack.

This incorporates a rational attacker’s preference to keep system up and running in

order to continue collecting information and prolonging the attack. The shutdown

system strategy is modeled as the only effective strategy against the zero-day exploit

strategy. The zero-day exploit strategy is considered costly to an attacker since they

are generally costly to find and once used are generally fixed so they no longer work.

Given the attacker does not consider the new defender strategies and the attacker’s

zero-day exploit is too costly, the subgame that results is the original Chen and

Leneutre model.

The most important contribution of Gibson’s model is that by combining the

Chen and Leneutre model with HNF, dynamic variables are added to the payoff

functions in HNF. This allows for dynamic play and updating of variables as the

game is played.
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Appendix C: Prisoner’s Dilemma Temporal Hypergame Example

This appendix demonstrates the application of the temporal hypergame

framework to the classical game theoretic example of the Prisoner’s Dilemma. The

framework is applied to the Prisoner’s Dilemma in order to show the framework

is valid with classical games. The structural properties of the game do not allow

for detailed hypergame analysis, since the game is symmetric and does not have

differences in player perceptions required for hypergame analysis.

In game theory, the Prisoner’s Dilemma is a classic example of how the interaction

between two individuals leads to cooperation or not. In the Prisoner’s Dilemma there

are two players, Prisoner A and Prisoner B [90, 104, 284]. Each player can choose one

of two actions, either the player can choose to cooperate by staying silent or defect

by betraying the other player.

The consequence of selecting an action results in no jail time (jail(0)) or jail time

(jail(x) where x is the amount of time in jail). The payoff function is if the player

cooperates and the other player cooperates, both receive one year in jail, otherwise

if the other player defects the player receives 10 years in jail while the other player

receives no jail time. If both players defect, then both players receive five years in jail.

This game is shown in normal form in Figure C.1. Note that cooperate is abbreviated

“C” and defect as “D”.

In a single observation Prisoner’s Dilemma it is assumed the prisoners do not

have an opportunity to punish or reward their partner over the outcome of the game.

The only punishment are the prison sentences each prisoner receives and reputations

remain intact. After this non-repeated game each prisoner do not have any other

interaction with each other.
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Figure C.1: Prisoner’s Dilemma.

There is a repeated, or iterative, version of the Prisoner’s Dilemma where the

same prisoners play the game over and over [115]. Since the same players are playing

the same multiple times in succession, they can remember their opponent’s previous

actions and change their strategy accordingly. In this case it is assumed the players

know the number of times the game will be played, so the game is finite.

C.1 Initial Game Definition

The repeated Prisoner’s Dilemma can be represented using the notation of of the

temporal hypergame framework in Section 6.3 of Chapter 6, where the hypergame is

defined as:

HT
PD , {GT

P1} (C.1)

The perceived game GT
PD:

GT
PD , (N,ΣFull,ΦT

PD, {�i}i∈N) (C.2)
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where N is the set of players, such that N = {Prisoner A, Prisoner B}. Σ is

the set of actions available to the prisoners, where Σ = ΣPrisonerA ∪ ΣPrisonerB. The

actions available to Prisoner A is represented by ΣPrisonerA = {C, D} and Prisoner B

by ΣPrisonerB = {C, D}.

C.2 Identification of States and Transitions

The next step to represent a game in the temporal hypergame framework is to

identify the states and transitions for the game. The game arena is given by Equation

27 in Chapter 6:

ΦPD = (W,−→, w0,χ) (C.3)

W consists of seven game states, including start, AC , AD, ACBC , ACBD, ADBC ,

and ADBD. The −→ defines the game transitions such that (W x Σ) → W. The

possible transitions are:

• start x C → AC where Cooperate ∈ ΣPrisonerA

• start x D → AD where Defect ∈ ΣPrisonerA

• AC x C → ACBC where C ∈ ΣPrisonerB

• AD x C → ADBC where C ∈ ΣPrisonerB

• AC x D → ACBD where D ∈ ΣPrisonerB

• AD x D → ADBD where D ∈ ΣPrisonerB

• ACBC → start

• ADBC → start

• ACBD → start
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• ADBD → start

The initial state of the game w0, is equal to start ∈ W , where −−−→start = {AC , AD}.

χ - W —→ N function assigns he player whose turn it is to the game state w ∈

W. For example, χ(start) = Prisoner A, while χ(AC) = χ(AD) = Prisoner B. The

preference ordering function for the ith player �i = ui(x, y) ≤ ui(x′, y) for i ∈ N. This

means for Prisoner A �PrisonerA indicates the outcome (x,y) is preferred to outcome

(x′, y) if x ≤ x′ ∀(x, y) ∈ W . For Prisoner B �PrisonerB indicates the outcome (x,y)

is preferred to outcome (x, y′) if y ≤ y′ ∀(x, y) ∈ W . Notice the Nash equilibrium

concept is encoded in the preference relation, �i, assuming both players are rational.

C.3 Game Mapping

The next step of defining a game in the temporal hypergame framework is to

map the game to the extensive form game tree. An extensive form game tree T can

be associated with the Prisoner’s Dilemma game arena, φPD. The extensive form

game tree is defined from Equation 29 in Chapter 6:

T = (S,⇒, s0, λ) (C.4)

where (S, ⇒) is a countably infinite tree rooted at s0 with edges from Σ.

The nodes of the tree are given by S, where S = {root, AC , AD, ACBC , ACBD,

ADBC ,ADBD}. The root of the tree denoted s0, is equal root ∈ S. The x=⇒ is the

function that moves between nodes of the tree using the edge denoted by x ∈ Σ. The

possible nodes transitions are root C=⇒ AC , root D=⇒ AD where C, D ∈ σPrisonerA} ∪

{AC
C=⇒ ACBC , AC

D=⇒ ACBD, AD
C=⇒ ADBC , AD

D=⇒ ADBD where C, D ∈ σPrisonerB

• λ - S → W, where

– λ(s0) = w0
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– ∀s, s′ ∈ S, if s a=⇒ s′ then λ(s) a=⇒ λ(s′)

– if λ(s) = w and w a−→ w′ there exists s′ ∈ S s.t. s a=⇒ s′ and λ(s′) = w′

C.4 Path Structuring

The model for the Prisoner’s Dilemma can be represented by MPD = (T ,V)

using the notation discussed in Sections 6.3.1 and 6.3.2. The game tree, T is given

above and the valuation function V is given by:

• V(pint) = {s0}

• V(pdom) = {AD, ADBD}

• V(pworstA) = {AC , ACBD}

• V(pworstB ) = {AD, ADBC}

C.5 Define Player Strategies

The next step is to define the player strategies using the temporal hypergame

framework constructs defined in Sections 6.3.3 and 6.3.4 of Chapter 6. In this game

Prisoner’s A strategy can be defined as:

StratA ≡ ([pint 7→ D]A) · ([pint 7→ C]A) · ([� [turnB 7→ C]B ⇒ [turnA 7→ C]A) · ([�

[turnB 7→ D]B ⇒ [turnA 7→ D]A)

Prisoner’s B strategy can be defined as:

StratB ≡ ([pint 7→ D]A ⇒ [pdom 7→ D]B) · ([pint 7→ C]A ⇒ [pworstA 7→ D]B) ·

([�[turnA 7→ C]A ⇒ [turnB 7→ C]B) · ([�[turnA 7→ D]A ⇒ [turnB 7→ D]B)
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C.6 Analyze Model

Thus, StratA {B (pdom ∨ pworstA). Note that pworstA is actually the worst move

for Prisoner A but the best move for Prisoner B. If Prisoner A knows Prisoner B’s

strategy, Prisoner A might be tempted to play ”Cooperate” which could lead to the

worst outcome for Prisoner A. But if Prisoner A plays ”Defect”, Prisoner A can ensure

the worst outcome is avoided:

[pint 7→ D]A {A ¬pworstA .

This means Prisoner’s A strategy can be reduced with the ability to ensure

avoidance of the worst outcome:

StratA ≡ ([pint 7→ D]A)

Without cooperation player A still have the strategy set StratA {B (pdom ∨

pworstA). Note that pworstA is actually the worst move for Prisoner A but the best

move for Prisoner B. If Prisoner A knows Prisoner B’s strategy, Prisoner A might be

tempted to play “Cooperate” which could lead to the worst outcome for Prisoner A.

Prisoner A can ensure the worst outcome is avoided if Prisoner A plays “Defect”.

In theory, in a repeated game the prisoners can enforce punishment and rewards

since the players with interact multiple times. This means each can force the other

player to play “cooperate”. The problem comes with the sequence being finite;

which means the last game played between the players results cooperation being

unenforceable. In the last round the prisoner B has the following strategy:

[turnB ∧ (< D+ > leaf∨ < C+ > leaf) 7→ D]B

This is worst case for prisoner A if they play cooperate in every round of the

game: [turnA 7→ C]A {A [turnB ∧ (< D+ > leaf∨ < C+ > leaf) 7→ D]B. But if

prisoner A plays defect then they can enforce throughout the game the result will not
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be the worst outcome: [turnA 7→ C]A {A [turnB ∧ (< D+ > leaf∨ < C+ > leaf) 7→

D]B ≡ ¬pworstA .

Using backward induction on the game model, the result for the repeated version

of the Prisoner’s Dilemma is the same as for the single observation version. It results

in Prisoner A choosing to enforce that the outcome is not the worst possible.

[turnA 7→ D]A {A ¬pworstA .

C.7 Summary

This Appendix discusses the application of the temporal hypergame framework

to the classical game theoretic repeated Prisoner’s Dilemma. Using the temporal

hypergame framework, the concept of backwards induction was shown as a solution

to the Prisoner’s Dilemma. The Prisoner’s Dilemma is symmetric and does not have

differences in perception, therefore the structural properties do not allow for detailed

hypergame analysis. The Prisoner’s Dilemma is used for justification by example

to show validity to the classical game theoretic problems. There is nothing in the

formation of the temporal hypergame framework to limit its applicability to other

classical game theoretic games.
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Appendix D: Analysis of ’Hypergames and Bayesian Games’

Yasuo Sasaki and Kyoichi Kijima published “Hypergames and Bayesian Games:

A Theoretical Comparison of the Models of Games with Incomplete Information”. It

appears in the Journal of Systems Science and Complexity [313]. In this article the

authors make the claim “any hypergame can naturally be reformulated in terms of

Bayesian games in an unified way”. This claim is much stronger than the method they

actually propose. There are limitations that results in hypergames that cannot be

reformulated in terms of a Bayesian game. The authors discuss the limitations of their

method, which limits the ability to reformulate a hypergame in terms of a Bayesian

game. The purpose of this discussion is to cover what they did, including the claims

they made, present information the authors missed and highlight the usefulness of

hypergames as original proposed by P.G. Bennett [34] and extended later by Russell

Vane [356].

D.1 Hypergames and Bayesian Games

Sasaki and Kijima propose a Bayesian Representation of Hypergames by using

Harsanyi’s theory that any game of incomplete information can be transformed into

a game of complete information. Before discussing Sasaki and Kijima’s work, an

overview of Harsanyi research will be given for understanding. Harsanyi researched

games of incomplete information in game theory. In game theory, a game of

incomplete information is when partial or no information concerning the opponent’s

past moves are given in advance of the player’s decision. Harsanyi claims uncertainties

in the game and perceptual differences between players can be modeled as a game

of complete information, where all players know the strategies and payoffs of every

player, by:

241



• Players - Participation by an player is converted into the players action set. If

the player is suppose to be out of the game, then the player is only allowed one

action, “non-participation”.

• Actions - Feasibility of a particular action for an player is converted into the

players utility function. If the action is not feasible then the player receives a

low utility whenever the action is taken.

• Utility Functions - Uncertainties in the game and perceptual differences between

players are reduced to uncertainties or perceptual differences about the utility

functions. Each possible utility function is then modeled as a type of player.

Hypergames are games of incomplete information by design. In a hypergame, one

player may information or a strategy the other player(s) is not aware of or discounts.

Because hypergames are games of incomplete information, Sasaki and Kijima applies

Harsanyi’s claim to hypergames as follows to transform the game from incomplete

information to complete information.

• Set of Players Transformation - If player A does not believe another player B

participates in the game, but player B actually does participate in the game,

then according to Harsanyi, player A excluding player B from the game is the

same as player A including player B in the set of players in the game but only

allowing player B one action “non-participation”. This allows every player to

see a common set of players; a requirement for a game of complete information.

• Set of Actions Transformation - If player A does not believe an action is feasible

for player B in the game, but the action is really feasible for player B (player

A discounts an action of player B), then according to Harsanyi, player A

excluding the action for player B is the same as player A including the action
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for player B in the action set but assigning a very low utility to the action’s

usage for player B, in player A’s own view of the game.

D.2 Issues with Modeling Hypergames as Bayesian Games

The authors clearly state there are a few issues with modeling hypergames as

Bayesian games. This results in the inability to reformulate “any” hypergame in

terms of a Bayesian game as the authors claim.

First, analyzing hypergames using Bayesian games is possible if one is only

concerned with the hyper Nash equilibrium and Bayesian Nash equilibrium concepts.

A Nash equilibrium is a set of actions in which neither player can increase their utility

by unilaterally changing his or her strategy. If a player uses mixed strategies, then the

expected value of the payoffs are maximized. A hyper Nash equilibrium [195], is an

outcome where each player chooses an action that leads to a Nash equilibrium. The

set of all hyper Nash equilibria for a given game, is the set of all possible outcomes

“likely to happen” [195]. The authors do discuss that other equilibrium concepts may

not allow for modeling as a Bayesian game [313].

Second, Bayesian games make an assumption that allows every player to see

a common set of possibilities concerning the game structure. The authors discuss

how in real situations, this assumption is “hard to accept”, pointing out it is a

controversial issue in epistemic game theory [313]. This leads the authors to conclude

the assumption is incompatible with hypergames [313].

In real situations, it may not be possible for every player to see a common set of

possibilities of the game structure. The inability to see a common set of possibilities

may be due to the fact that in real world situations information is missing, obstructed,

or misleading. For example, the U.S. Government uses all three techniques to limit

and/or the release of sensitive information to adversaries. The U.S. Government

will classify information to create missing information on true capabilities, redact
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documents to obstruct information, and participate in deception techniques to mislead

adversaries about true capabilities.

D.3 Hypergame Normal Form

Sasaki and Kijima only apply Harsanyi’s claims to the original hypergame model

developed by P.G. Bennett [34]; they do not discuss or mention the extension to

hypergame theory by Russell Vane in his doctorial dissertation published in 2000.

Vane extends the original hypergame model by including an assessment of the player’s

beliefs, as well as an assessment about the risk of selecting a strategy that is a non

Nash equilibrium mixed strategy (NEMS). This extended hypergame model is called

Hypergame Normal Form [356].

Vane uses six assessment properties when building Hypergame Normal Form.

The first three are taken from game theory and decision theory without modification

[356].

Property 1: The result of every Row strategy versus every considered Column

strategy must be estimable. Which means every row-column pair leads to an

outcome.

Property 2: Every result can be evaluated as a utility for Row.

Property 3: Every result can be evaluated as Row’s quantification of the

Column’s utility.

Vane then proposes three additional assessment properties as he constructs the

Hypergame Normal Form in order to allow Row to record beliefs about the reasoning

of Column. These three are unique to Vane’s research [356].

Property 4: Row has a reasoning context about the Column’s decision process,

which allows the recording of Row’s information about Column’s expected play.
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Property 5: Row has a way to record uncommitted subgame belief about

Column’s expected play.

Property 6: Row has a way to express and quantify his exposure to Column’s

most effective counterstrategy. This property corresponds to the fear of being

outguessed in the game.

Vane extended hypergame theory by building upon the theoretical concepts

in game theory, decision theory concepts, and risk mitigation knowledge [356].

Vane research aims to correct some of the shortfalls of game theory and decision

theory by creating a mathematical bridge between the two. Why is a mathematical

bridge needed? Game theory and decision theory disagree about how the to access

probability of a given situation arising and how to use the probability to select the

most desirable strategy.

The probabilities are implicitly derived from an expert’s view of the game being

modeled in game theory, referred to as the full game. In game theory, the selected

strategy is often the strategy with the least amount of vulnerability. This is seen

through the use of Nash equilibriums as game theoretic solutions, where neither

player can increase their utility by unilaterally changing his or her strategy. A

Nash equilibrium leads to a game theoretic solution with vulnerability minimized

by discouraging an opponent to change their choice of action (doing so would result

in a decrease in expected utility by the Nash equilibrium definition).

Decision theory derives the probabilities by understanding the situation. These

probabilities are normally derived without regard for the opponent (by definition

decision theory only deals with the current player not the opponent), resulting in the

player’s best guess being used to select strategies. This leads to selected strategies

with higher expected utility, when compared to game theory, but one a smart and
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clever adversary would be able to exploit or outmaneuver (an example would be to

use game theoretic concepts to exploit the decision theoretic outcome).

Hypergame Normal Form offers an approach that minimizes the risk of being

outmaneuvered by an adversary while achieving a higher expected utility. This

is accomplished by incorporating both explicit and implicit assessments of the

probability distributions. This allows the risky strategy selection (although resulting

in higher expected utility) from decision theory to be compared to the safer, but less

rewarding strategies recommended in the game theoretic approach using the full game

- where a player considers not only their actions on the outcome, but also the actions

of their opponent(s).

Introduction of hypergame expected utility by Vane is the mathematical bridge

between game theory and decision theory. Vane does this by taking into account the

player’s fear of being outguessed or outmaneuvered by their opponent. When there is

no fear of being outguessed, then hypergame expected utility resembles the expected

utility from decision theory. When the fear of being outguessed approaches 1 (100%),

the hypergame expected utility is the worst case solution. For the worst case solution

game theory provides a better solution than decision theory, since game theory leads

to maximizing the minimum expected utility.

D.4 Advantages of Hypergames

Hypergame theory, even with its foundation in game theory, is fundamentally

heretical to game theoretic concepts. Game theory assumes full knowledge of the

conflict and a common mode of rationality among players in order to derive consistent

alignment in beliefs. This consistent alignment in beliefs under lays the assumption

of rationality in game theory. This leads to a player believing opponents reasons in

the same manner as themselves. Hypergame theory disregards consistent alignment

because it is often a fallacy given the wide range of beliefs within human nature. For
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example, terrorists may not reason according to rational expectations. A rational

terrorist would try to maximize the expected utility (in terms of causalities) of

carrying out an attack, but from experience terrorist often carry out attacks that

result in lower expected utility (in terms of causalities) but are still successful. This

means a terrorist’s beliefs being any success maximizes expected utility, while a

rational actor, such as law enforcement, would expect maximization of expected utility

in terms of causalities to be rational.

Hypergames allow a player to take advantage of the of strategies resulting the

highest expected utility, while minimizing being deceived by an opponent. In extended

hypergames this is accomplished by comparing the game theoretic solution against

the decision theoretic solution. Any solution that is greater than, equal to, or less

is considered completely effective, partially effective, or ineffective strategies. Vane

discounts the expected utility by evaluating the vulnerability resulting from its use

and assigning a weight to it.

D.5 Bayesian Games and Probability Distributions

As discussed previously, when a hypergame is reformulated as a Bayesian game

a probability distribution is required. Hypergames, as extended by Vane, do not

require an initial probability distribution as do the Bayesian games. Even the original

hypergame model proposed by P.G. Bennett does not require an initial probability

distribution. When a hypergame is transformed into a Bayesian game, a probability

distribution is required, but none of the decision theory axioms determine how the

probability distribution is derived.

In reality, this means additional information is need (not just the hypergame

model) in order to represent a hypergame in decision theory. This additional

information is used to derive the probability distribution. If additional information is

required on the Bayesian model than was previously given in the hypergame model,
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did the authors actually present a method to transform hypergames into a Bayesian

game and ultimately decision theory? Or did the authors just propose a Bayesian

representation of hypergames if more information is given.

It could be argued that game theoretic concepts such as the Nash equilibrium

can be used to derive the probability distribution. While this is true this would not be

a pure decision theory based model; it would still be a game theoretic and raises the

question if the hypergames have been fully modeled under decision theory without

the need for game theory.

D.6 Summary

This appendix discussed the paper by Yasuo Sasaki and Kyoichi Kijima published

in 2012 on hypergames and Bayesian games. The authors work is discussed, their

claims, as well as weaknesses of their approach including the limited usage of

equilibrium concepts and inability to see a common game structure in real world

situations. Questions are also raised as to if hypergames, which do not require a

probability distribution, can be transformed into a Bayesian game without additional

information.

248



Bibliography

[1] Abad-Santos, Alexander. “China Is Winning the Cyber War Because They
Hacked U.S. Plans for Real War”. The Atlantic Wire, May 2013.

[2] Abadi, M. “The power of temporal proofs”. Theoretical Computer Science,
65(1):35 – 83, 1989.

[3] AFP. “Cyber attacks a grwoing threat for US financial system”. Online, May
2015. URL http://phys.org/news/2015-05-cyber-threat-financial.html.

[4] Agotnes, Thomas, Wiebe van der Hoek, and Michael Wooldridge. “Temporal
qualitative coalitional games”. Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, AAMAS ’06, 177–
184. ACM, New York, NY, USA, 2006. ISBN 1-59593-303-4. URL http:
//doi.acm.org/10.1145/1160633.1160662.

[5] Aiello, Marco, Ian Pratt-Hartmann, and Johan Benthem. “What is Spatial
Logic?” Marco Aiello, Ian Pratt-Hartmann, and Johan Benthem (editors),
Handbook fo Spatial Logics, 1 – 11. Springer Netherlands, 2007.

[6] Alazzawe, Anis, Asad Nawaz, and Murad Mehmet Bayraktar. “Game Theory
and Intrusion Detection Systems”. ISA 767 - Secure E-Commerce, 2006.

[7] Alchourron, C., P. Gardenfors, and D. Makinson. “On the logic of theory
change: partial meet contraction and revision functions”. The Journal of
Symbolic Logic, 50:510 – 530, 1993.

[8] Alexander, David. “U.S. defense firms face relentless cyberattacks”. Reuters,
September 2011.

[9] de Alfaro, L., M. Faella, T. Henzinger, R. Majumdar, and M. Stoelinga.
“The element of surprise in timed games”. 14th international Conference on
Concurrency Theory, volume 2761, 144 – 158. LNCS, Springer-Verlag, 2003.

[10] Aliseda, Atocha. Abductive Reasoning, 2 – 225. In Abductive Reasoning Logical
Investigations into Discovery and Explanation. Springer, April 2006.

[11] Aliseda, Atocha. “Abductive Reasoning: Challenges Ahead”. THEORIA.
An International Journal for Theory, History and Foundations of Science,
22(3):261 – 270, 2009.

[12] Allen, J.F. “Maintaining knowledge about temporal intervals”. ACM
Communications, 26(11):832 – 843, November 1983.

249

http://phys.org/news/2015-05-cyber-threat-financial.html
http://doi.acm.org/10.1145/1160633.1160662
http://doi.acm.org/10.1145/1160633.1160662


[13] Allen, J.F. “Towards a general theory of action and time”. Artificial Intelligence,
23:123 – 154, 1984.

[14] Allen, J.F. and P.J. Hayes. “A common sense theory of time”. 9th International
Joint Conference on Artificial intelligence (IJCAI), 528 – 531. August 1985.

[15] Alpcan, Tansu and Tamer Basar. “An Intrusion Detection Game with Limited
Observations”. Proceedings of 12th International Symposium on Dynamic
Games and Applications. July 2006.

[16] Alur, R., T. Feder, and T.A. Henzinger. “The benefits of relaxing punctuality”.
Proceedings of the 10th Annual ACM Symp. on Princ. Dist. Comp. 1991.

[17] Alur, R. and T.A. Henzinger. “A really temporal logic”. Proceedings 30th IEEE
Symp. on Foundations of Computer Science, 164 – 169. 1989.

[18] Alur, R. and T.A. Henzinger. “Real-time logics: Complexity and expressive-
ness”. Proceedings 5th IEEE Symp. on Logic in Computer Science, 492 – 501.
1990.

[19] Alur, R., T.A. Henzinger, and O. Kupferman. “Alternating time temporal
logic”. Jornal of the ACM, 49:672 – 713, 2002.

[20] An, B., J. Pita, E. Shieh, M. Tambe, C. Kiekintveld, and J. Marecki. “Guards
and protect: Next generation applications of security games”. SIGECOM, 31 –
34. 2011.

[21] Aumann, R. J. and M. Maschler. “Game theoretic analysis of a bankruptcy
problem from the talmud”. Journal Economic Theory, 36:195 – 213, 1985.

[22] Bananno, Giacomo. “Temporal Interaction of Information and Belief”. Studia
Logica: An International Journal for Symbolic Logic, 86(3):375 – 401, August
2007.

[23] Bandoyopadhyay, Tridib and Reda Sebalia. “Countering Cyber Terrorism: In-
vestment Models Under Decision and Game Theoretic Frameworks”. Proceed-
ings of the Southern Association for Information Systems Conference. Rich-
mond, VA, March 2008.

[24] Banieqbal, B. and H. Barringer. A study of an extended temporal language and
a temporal fixed point calculus. Technical Report UMCS-86-10-2, Department
of Computer Science, University of Manchester, November 1986.

[25] Baral, C. and M. Gelfond. “Logic programming and reasoning about actions”.
M. Fisher, D. Gabbay, and L. Vila (editors), Handbook of Temporal Reasoning
in Artificial Intelligence, Foundations of Artificial Intelligence, volume 1, 389 –
428. Elsevier Press, 2005.

250



[26] Baron, Jonathan. Thinking and Deciding. Cambridge University Press, 4th
edition, October 2007.

[27] Barringer, H. and D. Gabbay. “Modal varieties of temporal logic”. M. Fisher,
D. Gabby, and L. Vila (editors), Handbook of Temporal Reasoning in Artificial
Intelligence, volume 1, 119 – 166. Elsevier, 2005.

[28] Barringer, H., R. Kuiper, and A. Pnueli. “A compositional temporal approach
to a CSP-like language”. The Role of Abstract Models in Information Processing.
IFIP Working Conference, Vienna, 1985.

[29] Barringer, H., R. Kuiper, and A. Pnueli. “A really abstract concurrent
model and its temporal logic”. 13th ACM Symposium on the Principles of
Programming Languages (POPL). January 1986.

[30] Basilico, N., N. Gatti, and F. Amigoni. “Leader-follower strategies for robotic
patrolling in environments with arbitrary topologies”. Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems, 500
– 503. 2009.

[31] Battigalli, P. “Strategic Independence and Perfect Bayesian Equilibria”. Journal
of Economic Theory, 70:201 – 234, 1996.

[32] Bennett, Michael and Russell R. Vane III. “Using Hypergames for Deception
Planning and Counter deception Analysis”. Defense Intelligence Journal, 15:117
– 138, 2006.

[33] Bennett, Peter and Steve Cropper. “Uncertainty and Conflict: Combining
Conflict Analysis and Strategic Choice”. Journal of Behavioral Decision Making,
3:29 – 45, 1990.

[34] Bennett, P.G. “Toward a theory of hypergames”. OMEGA, 5(6):749 – 751,
1977.

[35] Bennett, P.G. “Bidders and Dispenser: manipulative hypergames in a
multinational context”. European Journal of Operational Research, 4:293 – 306,
1980.

[36] Bennett, P.G. “Hypergames, the development of an approach to modeling
conflicts”. Futures, 12:489 – 507, 1980.

[37] Bennett, P.G., S. Cropper, and C. Huxham. Rational Analysis for a Problematic
World, chapter Modelling Interactiv Decisions: The Hypergame Focus. John
Wiley and Sons, Chichester, UK, 1989.

[38] Bennett, P.G., S. Cropper, and C. Huxham. Rational Analysis for a Problematic
World, chapter Using theHypergame Perspective: A Case Study, 315 – 340.
John Wiley and Sons, Chichester, UK, 1989.

251



[39] Bennett, P.G. and M.R. Dando. “Complex strategic analysis: A hypergame
perspective of the Fall of France”. Journal of the Operational Research Society,
30(1):23 – 32, 1979.

[40] Bennett, P.G. and M.R. Dando. “Fall Gelb and other games: A hypergame
perspective of the fall of france, 1940”. Journal of the Conflict Research Society,
1(2):1 – 32, 1979.

[41] Bennett, P.G. and M.R. Dando. “The Arms Race as a Hypergame”. Futures,
293–306, 1982.

[42] Bennett, P.G., M.R. Dando, and R.G. Sharp. “Using Hypergames to Model
Difficult Social Issues: An Approach to the case of soccer hooliganism”. Journal
of the Operational Research Society, 31:621 – 635, 1980.

[43] Bennett, P.G. and C.S. Huxham. “Hypergames and what they do a ’soft O.R.’
approach”. Journal of the Operational Research Society, 33:41 – 50, 1982.

[44] Bennett, P.G., C.S. Huxham, and M.R. Dando. “Shipping in crisis - a trial run
for ’Live’ application of the hypergame approach”. Omega, 9:579 – 594, 1981.

[45] van Benthem, J.F.A.K. The Logic of Time. Reidel, 1983.

[46] van Benthem, Johan. “Games in dynamic epistemic logic”. Bulletin of Economic
Research, 53(4):219 – 248, 2001.

[47] Berger, James O. Statistical Decision Theory and Bayesian Analysis. Springer
Series in Statistics. Springer, 2nd edition, 1993.

[48] Bernoulli, D. “Exposition of a New theory of the Measurement of Risk”.
Econometrica, 22:23–36, 1954.
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